609 research outputs found
Quel tableau géographique des paysages ligériens ?
Les paysages de la vallée de la Loire sont fortement marqués par la dynamique du fleuve et de ses affluents qui ont créé une mosaïque de terroirs avec les châteaux, les jardins, une diversité du bâti, des espaces agraires calqués sur les conditions pédoclimatiques. Ces paysages ont subi plusieurs révolutions, industrielles et agricoles, qui les ont profondément transformés. Nous vivons aujourd\u27hui une nouvelle révolution marquée par l\u27extension et la densification urbaine et par l\u27émergence de paysages-vitrines modelés par l\u27écologie et des usages essentiellement touristiques
Rivers groins along the Armoricain Loire : river responses and local resident reactions. A sociogeographical landscape reading as a complement for ecological engineering
International audienc
Specification of GnRH-1 neurons by antagonistic FGF and retinoic acid signaling
AbstractA small population of neuroendocrine cells in the rostral hypothalamus and basal forebrain is the key regulator of vertebrate reproduction. They secrete gonadotropin-releasing hormone (GnRH-1), communicate with many areas of the brain and integrate multiple inputs to control gonad maturation, puberty and sexual behavior. In humans, disruption of the GnRH-1 system leads to hypogonadotropic gonadism and Kallmann syndrome. Unlike other neurons in the central nervous system, GnRH-1 neurons arise in the periphery, however their embryonic origin is controversial, and the molecular mechanisms that control their initial specification are not clear. Here, we provide evidence that in chick GnRH-1 neurons originate in the olfactory placode, where they are specified shortly after olfactory sensory neurons. FGF signaling is required and sufficient to induce GnRH-1 neurons, while retinoic acid represses their formation. Both pathways regulate and antagonize each other and our results suggest that the timing of signaling is critical for normal GnRH-1 neuron formation. While Kallmann's syndrome has generally been attributed to a failure of GnRH-1 neuron migration due to impaired FGF signaling, our findings suggest that in at least some Kallmann patients these neurons may never be specified. In addition, this study highlights the intimate embryonic relationship between GnRH-1 neurons and their targets and modulators in the adult
A CMOS silicon spin qubit
Silicon, the main constituent of microprocessor chips, is emerging as a
promising material for the realization of future quantum processors. Leveraging
its well-established complementary metal-oxide-semiconductor (CMOS) technology
would be a clear asset to the development of scalable quantum computing
architectures and to their co-integration with classical control hardware. Here
we report a silicon quantum bit (qubit) device made with an industry-standard
fabrication process. The device consists of a two-gate, p-type transistor with
an undoped channel. At low temperature, the first gate defines a quantum dot
(QD) encoding a hole spin qubit, the second one a QD used for the qubit
readout. All electrical, two-axis control of the spin qubit is achieved by
applying a phase-tunable microwave modulation to the first gate. Our result
opens a viable path to qubit up-scaling through a readily exploitable CMOS
platform.Comment: 12 pages, 4 figure
The pathogenicity island encoded PvrSR/RcsCB regulatory network controls biofilm formation and dispersal in Pseudomonas aeruginosa PA14
Pseudomonas aeruginosa biofilm formation is linked to persistent infections in humans. Biofilm formation is facilitated by extracellular appendages, some of which are assembled by the Chaperone Usher Pathway (Cup). The cupD gene cluster is located on the PAPI‐1 pathogenicity island of strain PA14 and has probably been acquired together with four genes encoding two‐component signal transduction proteins. We have previously showed that the RcsB response regulator activates expression of the cupD genes, which leads to the production of CupD fimbriae and increased attachment. Here we show that RcsB activity is tightly modulated by two sensors, RcsC and PvrS. While PvrS acts as a kinase that enhances RcsB activity, RcsC has a dual function, first as a phosphorelay, and second as a phosphatase. We found that, under certain growth conditions, overexpression of RcsB readily induces biofilm dispersal. Microarray analysis shows that RcsB positively controls expression of pvrR that encodes the phosphodiesterase required for this dispersal process. Finally, in addition to the PAPI‐1 encoded cupD genes, RcsB controls several genes on the core genome, some of which encode orphan response regulators. We thus discovered that RcsB is central to a large regulatory network that fine‐tunes the switch between biofilm formation and dispersal
Solution structure of the N-terminal dsRBD of Drosophila ADAR and interaction studies with RNA
Adenosine deaminases that act on RNA (ADAR) catalyze adenosine to inosine (A-to-I) editing in double-stranded RNA (dsRNA) substrates. Inosine is read as guanosine by the translation machinery; therefore A-to-I editing events in coding sequences may result in recoding genetic information. Whereas vertebrates have two catalytically active enzymes, namely ADAR1 and ADAR2, Drosophila has a single ADAR protein (dADAR) related to ADAR2. The structural determinants controlling substrate recognition and editing of a specific adenosine within dsRNA substrates are only partially understood. Here, we report the solution structure of the N-terminal dsRNA binding domain (dsRBD) of dADAR and use NMR chemical shift perturbations to identify the protein surface involved in RNA binding. Additionally, we show that Drosophila ADAR edits the R/G site in the mammalian GluR-2 pre-mRNA which is naturally modified by both ADAR1 and ADAR2. We then constructed a model showing how dADAR dsRBD1 binds to the GluR-2 R/G stem-loop. This model revealed that most side chains interacting with the RNA sugar-phosphate backbone need only small displacement to adapt for dsRNA binding and are thus ready to bind to their dsRNA target. It also predicts that dADAR dsRBD1 would bind to dsRNA with less sequence specificity than dsRBDs of ADAR2. Altogether, this study gives new insights into dsRNA substrate recognition by Drosophila ADAR
Spectra of Poynting-flux powered GRB outflows
We investigate the production of the gamma-ray spectrum of a Poynting-flux
dominated GRB ouflow. The very high magnetic field strengths
(super-equipartition) in such a flow lead to very efficient synchrotron
emission. In contrast with internal shocks, dissipation of magnetic energy by
reconnection is gradual and does not produce the spectrum of cooling electrons
associated with shock acceleration.We show that a spectrum with a break in the
BATSE energy range is produced, instead, if the magnetic dissipation heats a
small (\sim 10^{-4}) population of electrons.Comment: Section 3 revised, typos corrected, accepted for publication in A&
Label-Free C-Reactive Protein Si Nanowire FET Sensor Arrays With Super-Nernstian Back-Gate Operation
We present a CMOS-compatible double gate and label-free C-reactive protein (CRP) sensor, based on silicon on insulator (SOI) silicon nanowires arrays. We exploit a reference subtracted detection method and a super-Nernstian internal amplification given by the double gate structure. We overcome the Debye screening of charged CRP proteins in solutions using antibodies fragments as capturing probes, reducing the overall thickness of the capture layer. We demonstrate the internal amplification through the pH response of the sensor, in static and real-time working modes. While operated in back-gate configuration, the sensor shows excellent stability (<20 pA/min in the worst case), low hysteresis (<300 mV), and a great sensitivity up to 1.2 nA/dec toward CRP proteins in the linear response range. The reported system is an excellent candidate for the continuous monitoring of inflammation biomarkers in serum or interstitial fluid
Direct observation of a highly spin-polarized organic spinterface at room temperature
The design of large-scale electronic circuits that are entirely
spintronics-driven requires a current source that is highly spin-polarised at
and beyond room temperature, cheap to build, efficient at the nanoscale and
straightforward to integrate with semiconductors. Yet despite research within
several subfields spanning nearly two decades, this key building block is still
lacking. We experimentally and theoretically show how the interface between Co
and phthalocyanine molecules constitutes a promising candidate. Spin-polarised
direct and inverse photoemission experiments reveal a high degree of spin
polarisation at room temperature at this interface. We measured a magnetic
moment on the molecules's nitrogen pi orbitals, which substantiates an
ab-initio theoretical description of highly spin-polarised charge conduction
across the interface due to differing spinterface formation mechanims in each
spin channel. We propose, through this example, a recipe to engineer simple
organic-inorganic interfaces with remarkable spintronic properties that can
endure well above room temperature
- …