419 research outputs found
Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition
In this paper we investigate the effect of stochasticity in the spatial and
temporal distribution of supernova remnants on the spectrum and chemical
composition of cosmic rays observed at Earth. The calculations are carried out
for different choices of the diffusion coefficient D(E) experienced by cosmic
rays during propagation in the Galaxy. In particular, at high energies we
assume that D(E)\sim E^{\delta}, with and being the
reference scenarios. The large scale distribution of supernova remnants in the
Galaxy is modeled following the distribution of pulsars, with and without
accounting for the spiral structure of the Galaxy. We find that the stochastic
fluctuations induced by the spatial and temporal distribution of supernovae,
together with the effect of spallation of nuclei, lead to mild but sensible
violations of the simple, leaky-box-inspired rule that the spectrum observed at
Earth is with , where
is the slope of the cosmic ray injection spectrum at the sources. Spallation of
nuclei, even with the small rates appropriate for He, may account for slight
differences in spectral slopes between different nuclei, providing a possible
explanation for the recent CREAM observations. For we find that
the slope of the proton and helium spectra are and
respectively at energies above 1 TeV (to be compared with the measured values
of and ). For the hardening of the He
spectra is not observed. We also comment on the effect of time dependence of
the escape of cosmic rays from supernova remnants, and of a possible clustering
of the sources in superbubbles. In a second paper we will discuss the
implications of these different scenarios for the anisotropy of cosmic rays.Comment: 28 pages, To appear in JCA
Interferometry of Direct Photons in Central 280Pb+208Pb Collisions at 158A GeV
Two-particle correlations of direct photons were measured in central
208Pb+208Pb collisions at 158 AGeV. The invariant interferometric radii were
extracted for 100<K_T<300 MeV/c and compared to radii extracted from charged
pion correlations. The yield of soft direct photons, K_T<300 MeV/c, was
extracted from the correlation strength and compared to theoretical
calculations.Comment: 5 pages, 4 figure
Photon Production in Hot and Dense Strongly Interacting Matter
This text is meant as an introduction to the theoretical physics of photon
emission in hot and dense strongly interacting matter, the principal
application being relativistic nuclear collisions. We shall cover some of the
results and techniques appropriate for studies at SPS, RHIC, and LHC energiesComment: 35 pages, accepted for publication, Landolt-Boernstein Volume 1-23
Recommended from our members
Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sNN= 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μB> 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter
Systematics of Inclusive Photon Production in 158 AGeV Pb Induced Reactions on Ni, Nb, and Pb Targets
The multiplicity of inclusive photons has been measured on an event-by-event
basis for 158 AGeV Pb induced reactions on Ni, Nb, and Pb targets. The
systematics of the pseudorapidity densities at midrapidity (rho_max) and the
width of the pseudorapidity distributions have been studied for varying
centralities for these collisions. A power law fit to the photon yield as a
function of the number of participating nucleons gives a value of 1.13+-0.03
for the exponent. The mean transverse momentum, , of photons determined
from the ratio of the measured electromagnetic transverse energy and photon
multiplicity, remains almost constant with increasing rho_max. Results are
compared with model predictions.Comment: 16 pages including 4 figure
Multiplicity Distributions and Charged-neutral Fluctuations
Results from the multiplicity distributions of inclusive photons and charged
particles, scaling of particle multiplicities, event-by-event multiplicity
fluctuations, and charged-neutral fluctuations in 158 GeV Pb+Pb
collisions are presented and discussed. A scaling of charged particle
multiplicity as and photons as have been observed, indicating violation of naive wounded nucleon model.
The analysis of localized charged-neutral fluctuation indicates a
model-independent demonstration of non-statistical fluctuations in both charged
particles and photons in limited azimuthal regions. However, no correlated
charged-neutral fluctuations are observed.Comment: Talk given at the International Symposium on Nuclear Physics
(ISNP-2000), Mumbai, India, 18-22 Dec 2000, Proceedings to be published in
Pramana, Journal of Physic
Indirect signals from light neutralinos in supersymmetric models without gaugino mass unification
We examine indirect signals produced by neutralino self-annihilations, in the
galactic halo or inside celestial bodies, in the frame of an effective MSSM
model without gaugino-mass unification at a grand unification scale. We compare
our theoretical predictions with current experimental data of gamma-rays and
antiprotons in space and of upgoing muons at neutrino telescopes. Results are
presented for a wide range of the neutralino mass, though our discussions are
focused on light neutralinos. We find that only the antiproton signal is
potentially able to set constraints on very low-mass neutralinos, below 20 GeV.
The gamma-ray signal, both from the galactic center and from high galactic
latitudes, requires significantly steep profiles or substantial clumpiness in
order to reach detectable levels. The up-going muon signal is largely below
experimental sensitivities for the neutrino flux coming from the Sun; for the
flux from the Earth an improvement of about one order of magnitude in
experimental sensitivities (with a low energy threshold) can make accessible
neutralino masses close to O, Si and Mg nuclei masses, for which resonant
capture is operative.Comment: 17 pages, 1 tables and 5 figures, typeset with ReVTeX4. The paper may
also be found at http://www.to.infn.it/~fornengo/papers/indirect04.ps.gz or
through http://www.astroparticle.to.infn.it/. Limit from BR(Bs--> mu+ mu-)
adde
Jet Tomography in the Forward Direction at RHIC
Hadron production at high- displays a strong suppression pattern in a
wide rapidity region in heavy ion collisions at RHIC energies. This finding
indicates the presence of strong final state effects for both transversally and
longitudinally traveling partons, namely induced energy loss. We have developed
a perturbative QCD based model to describe hadron production in collision,
which can be combined with the Glauber -- Gribov model to describe hadron
production in heavy ion collisions. Investigating and collisions
at energy GeV at mid-rapidity, we find the opacity of the
strongly interacting hot matter to be proportional to the participant nucleon
number. Considering forward rapidities, the suppression pattern indicates the
formation of a longitudinally contracted dense deconfined zone in central heavy
ion collisions. We determine parameters for the initial geometry from the
existing data.Comment: 6 pages for Hot Quarks '06 Conferenc
Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017
Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very
high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio
fluxes. Our aim is to understand the radiative processes by investigating the
observed emission and its production mechanism using the High Energy
Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent
observations of the BL Lac source RGB J0152+017 made in late October and
November 2007 with the H.E.S.S. array consisting of four imaging atmospheric
Cherenkov telescopes. Contemporaneous observations were made in X-rays by the
Swift and RXTE satellites, in the optical band with the ATOM telescope, and in
the radio band with the Nancay Radio Telescope. Results: A signal of 173
gamma-ray photons corresponding to a statistical significance of 6.6 sigma was
found in the data. The energy spectrum of the source can be described by a
powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux
above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source
spectral energy distribution (SED) can be described using a two-component
non-thermal synchrotron self-Compton (SSC) leptonic model, except in the
optical band, which is dominated by a thermal host galaxy component. The
parameters that are found are very close to those found in similar SSC studies
in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE
gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from
the SED in Swift data, allows clearly classification it as a
high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures
Event-by-Event Fluctuations in Particle Multiplicities and Transverse Energy Produced in 158.A GeV Pb+Pb collisions
Event-by-event fluctuations in the multiplicities of charged particles and
photons, and the total transverse energy in 158 GeV Pb+Pb collisions
are studied for a wide range of centralities. For narrow centrality bins the
multiplicity and transverse energy distributions are found to be near perfect
Gaussians. The effect of detector acceptance on the multiplicity fluctuations
has been studied and demonstrated to follow statistical considerations. The
centrality dependence of the charged particle multiplicity fluctuations in the
measured data has been found to agree reasonably well with those obtained from
a participant model. However for photons the multiplicity fluctuations has been
found to be lower compared to those obtained from a participant model. The
multiplicity and transverse energy fluctuations have also been compared to
those obtained from the VENUS event generator.Comment: To appear in Physical Review C; changes : more detailed discussion on
errors and few figures modifie
- …
