133 research outputs found

    Prenatal diagnosis of focal dermal hypoplasia: Report of three fetuses and review of the literature

    Get PDF
    Focal dermal hypoplasia (FDH) is a rare syndrome characterized by pleiotropic features knowing to involve mostly skin and limbs. Although FDH has been described in children and adults, the cardinal signs of the fetal phenotype are not straightforward impacting the quality of the prenatal diagnosis. We describe in depth the ultrasound, radiological, macroscopical, and histological phenotype of three female fetuses with a severe form of FDH, propose a review of the literature and an attempt to delineate minimal and cardinal signs for FDH diagnosis. This report confirms the variability of FDH phenotype, highlights unreported FDH features, and allows delineating evocative clinical associations for prenatal diagnosis, namely intrauterine growth retardation, limbs malformations, anterior wall/diaphragm defects, and eye anomalies. © 2016 Wiley Periodicals, Inc

    Plasma Fetuin-A Levels and the Risk of Type 2 Diabetes

    Get PDF
    OBJECTIVE—The liver-secreted protein fetuin-A induces insulin resistance in animals, and circulating fetuin-A is elevated in insulin resistance and fatty liver in humans. We investigated whether plasma fetuin-A levels predict the incidence of type 2 diabetes in a large prospective, population-based study

    Baseline Chest Computed Tomography as Standard of Care in High-Risk Hematology Patients

    Get PDF
    Baseline chest computed tomography (BCT) in high-risk hematology patients allows for the early diagnosis of invasive pulmonary aspergillosis (IPA). The distribution of BCT implementation in hematology departments and impact on outcome is unknown. A web-based questionnaire was designed. International scientific bodies were invited. The estimated numbers of annually treated hematology patients, chest imaging timepoints and techniques, IPA rates, and follow-up imaging were assessed. In total, 142 physicians from 43 countries participated. The specialties included infectious diseases (n = 69; 49%), hematology (n = 68; 48%), and others (n = 41; 29%). BCT was performed in 57% (n = 54) of 92 hospitals. Upon the diagnosis of malignancy or admission, 48% and 24% performed BCT, respectively, and X-ray was performed in 48% and 69%, respectively. BCT was more often used in hematopoietic cell transplantation and in relapsed acute leukemia. European centers performed BCT in 59% and non-European centers in 53%. Median estimated IPA rate was 8% and did not differ between BCT (9%; IQR 5-15%) and non-BCT centers (7%; IQR 5-10%) (p = 0.69). Follow-up computed tomography (CT) for IPA was performed in 98% (n = 90) of centers. In high-risk hematology patients, baseline CT is becoming a standard-of-care. Chest X-ray, while inferior, is still widely used. Randomized, controlled trials are needed to investigate the impact of BCT on patient outcome

    Predicting gene promoter methylation in non-small-cell lung cancer by evaluating sputum and serum

    Get PDF
    The use of 5-methylcytosine demethylating agents in conjunction with inhibitors of histone deacetylation may offer a new therapeutic strategy for lung cancer. Monitoring the efficacy of gene demethylating treatment directly within the tumour may be difficult due to tumour location. This study determined the positive and negative predictive values of sputum and serum for detecting gene methylation in primary lung cancer. A panel of eight genes was evaluated by comparing methylation detected in the primary tumour biopsy to serum and sputum obtained from 72 patients with Stage III lung cancer. The prevalence for methylation of the eight genes in sputum (21–43%) approximated to that seen in tumours, but was 0.7–4.3-fold greater than detected in serum. Sputum was superior to serum in classifying the methylation status of genes in the tumour biopsy. The positive predictive value of the top four genes (p16, DAPK, PAX5 β, and GATA5) was 44–72% with a negative predictive value for these genes ⩾70%. The highest specificity was seen for the p16 gene, and this was associated with a odds ratio of six for methylation in the tumour when this gene was methylated in sputum. In contrast, for serum, the individual sensitivity for all genes was 6–27%. Evaluating the combined effect of methylation of at least one of the four most significant genes in sputum increased the positive predictive value to 86%. These studies demonstrate that sputum can be used effectively as a surrogate for tumour tissue to predict the methylation status of advanced lung cancer where biopsy is not feasible

    Baseline chest computed tomography as standard of care in high-risk hematology patients

    Get PDF
    Baseline chest computed tomography (BCT) in high-risk hematology patients allows for the early diagnosis of invasive pulmonary aspergillosis (IPA). The distribution of BCT implementation in hematology departments and impact on outcome is unknown. A web-based questionnaire was designed. International scientific bodies were invited. The estimated numbers of annually treated hematology patients, chest imaging timepoints and techniques, IPA rates, and follow-up imaging were assessed. In total, 142 physicians from 43 countries participated. The specialties included infectious diseases (n = 69; 49%), hematology (n = 68; 48%), and others (n = 41; 29%). BCT was performed in 57% (n = 54) of 92 hospitals. Upon the diagnosis of malignancy or admission, 48% and 24% performed BCT, respectively, and X-ray was performed in 48% and 69%, respectively. BCT was more often used in hematopoietic cell transplantation and in relapsed acute leukemia. European centers performed BCT in 59% and non-European centers in 53%. Median estimated IPA rate was 8% and did not differ between BCT (9%; IQR 5-15%) and non-BCT centers (7%; IQR 5-10%) (p = 0.69). Follow-up computed tomography (CT) for IPA was performed in 98% (n = 90) of centers. In high-risk hematology patients, baseline CT is becoming a standard-of-care. Chest X-ray, while inferior, is still widely used. Randomized, controlled trials are needed to investigate the impact of BCT on patient outcome

    Acadesine Kills Chronic Myelogenous Leukemia (CML) Cells through PKC-Dependent Induction of Autophagic Cell Death

    Get PDF
    CML is an hematopoietic stem cell disease characterized by the t(9;22) (q34;q11) translocation encoding the oncoprotein p210BCR-ABL. The effect of acadesine (AICAR, 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) a compound with known antileukemic effect on B cell chronic lymphoblastic leukemia (B-CLL) was investigated in different CML cell lines. Acadesine triggered loss of cell metabolism in K562, LAMA-84 and JURL-MK1 and was also effective in killing imatinib-resistant K562 cells and Ba/F3 cells carrying the T315I-BCR-ABL mutation. The anti-leukemic effect of acadesine did not involve apoptosis but required rather induction of autophagic cell death. AMPK knock-down by Sh-RNA failed to prevent the effect of acadesine, indicating an AMPK-independent mechanism. The effect of acadesine was abrogated by GF109203X and Ro-32-0432, both inhibitor of classical and new PKCs and accordingly, acadesine triggered relocation and activation of several PKC isoforms in K562 cells. In addition, this compound exhibited a potent anti-leukemic effect in clonogenic assays of CML cells in methyl cellulose and in a xenograft model of K562 cells in nude mice. In conclusion, our work identifies an original and unexpected mechanism by which acadesine triggers autophagic cell death through PKC activation. Therefore, in addition to its promising effects in B-CLL, acadesine might also be beneficial for Imatinib-resistant CML patients

    Fetuin-A Induces Cytokine Expression and Suppresses Adiponectin Production

    Get PDF
    BACKGROUND: The secreted liver protein fetuin-A (AHSG) is up-regulated in hepatic steatosis and the metabolic syndrome. These states are strongly associated with low-grade inflammation and hypoadiponectinemia. We, therefore, hypothesized that fetuin-A may play a role in the regulation of cytokine expression, the modulation of adipose tissue expression and plasma concentration of the insulin-sensitizing and atheroprotective adipokine adiponectin. METHODOLOGY AND PRINCIPAL FINDINGS: Human monocytic THP1 cells and human in vitro differenttiated adipocytes as well as C57BL/6 mice were treated with fetuin-A. mRNA expression of the genes encoding inflammatory cytokines and the adipokine adiponectin (ADIPOQ) was assessed by real-time RT-PCR. In 122 subjects, plasma levels of fetuin-A, adiponectin and, in a subgroup, the multimeric forms of adiponectin were determined. Fetuin-A treatment induced TNF and IL1B mRNA expression in THP1 cells (p<0.05). Treatment of mice with fetuin-A, analogously, resulted in a marked increase in adipose tissue Tnf mRNA as well as Il6 expression (27- and 174-fold, respectively). These effects were accompanied by a decrease in adipose tissue Adipoq mRNA expression and lower circulating adiponectin levels (p<0.05, both). Furthermore, fetuin-A repressed ADIPOQ mRNA expression of human in vitro differentiated adipocytes (p<0.02) and induced inflammatory cytokine expression. In humans in plasma, fetuin-A correlated positively with high-sensitivity C-reactive protein, a marker of subclinical inflammation (r = 0.26, p = 0.01), and negatively with total- (r = -0.28, p = 0.02) and, particularly, high molecular weight adiponectin (r = -0.36, p = 0.01). CONCLUSIONS AND SIGNIFICANCE: We provide novel evidence that the secreted liver protein fetuin-A induces low-grade inflammation and represses adiponectin production in animals and in humans. These data suggest an important role of fatty liver in the pathophysiology of insulin resistance and atherosclerosis

    The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia

    Get PDF
    Expression of the MECOM (also known as EVI1) proto-oncogene is deregulated by chromosomal translocations in some cases of acute myeloid leukemia (AML) and is associated with poor clinical outcome. Here, through transcriptomic and metabolomic profiling of hematopoietic cells, we reveal that EVI1 overexpression alters cellular metabolism. A screen using pooled short hairpin RNAs (shRNAs) identified the ATP-buffering, mitochondrial creatine kinase CKMT1 as necessary for survival of EVI1-expressing cells in subjects with EVI1-positive AML. EVI1 promotes CKMT1 expression by repressing the myeloid differentiation regulator RUNX1. Suppression of arginine-creatine metabolism by CKMT1-directed shRNAs or by the small molecule cyclocreatine selectively decreased the viability, promoted the cell cycle arrest and apoptosis of human EVI1-positive cell lines, and prolonged survival in both orthotopic xenograft models and mouse models of primary AML. CKMT1 inhibition altered mitochondrial respiration and ATP production, an effect that was abrogated by phosphocreatine-mediated reactivation of the arginine-creatine pathway. Targeting CKMT1 is thus a promising therapeutic strategy for this EVI1-driven AML subtype that is highly resistant to current treatment regimens. Keywords: AML; RUNX1; CKMT1; cyclocreatine; arginine metabolismNational Cancer Institute (U.S.) (NIH 1R35 CA210030-01)Stand Up To CancerBridge ProjectNational Cancer Institute (U.S.) (David H. Koch Institute for Integrative Cancer Research at MIT. Grant P30-CA14051
    corecore