5 research outputs found

    Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles

    Get PDF
    The interaction of single quantum emitters with an optical cavity enables the realization of efficient spin-photon interfaces, an essential resource for quantum networks. The dynamical control of the spontaneous emission rate of quantum emitters in cavities has important implications in quantum technologies, e.g., for shaping the emitted photons’ waveform or for driving coherently the optical transition while preventing photon emission. Here we demonstrate the dynamical control of the Purcell enhanced emission of a small ensemble of erbium ions doped into a nanoparticle. By embedding the nanoparticles into a fully tunable high finesse fiber based optical microcavity, we demonstrate a median Purcell factor of 15 for the ensemble of ions. We also show that we can dynamically control the Purcell enhanced emission by tuning the cavity on and out of resonance, by controlling its length with sub-nanometer precision on a time scale more than two orders of magnitude faster than the natural lifetime of the erbium ions. This capability opens prospects for the realization of efficient nanoscale quantum interfaces between solid-state spins and single telecom photons with controllable waveform, for non-destructive detection of photonic qubits, and for the realization of quantum gates between rare-earth ion qubits coupled to an optical cavity

    Abundances and Distributions of the Dominant nifH Phylotypes in the Northern Atlantic Ocean▿ †

    Get PDF
    Understanding the factors that influence the distribution and abundance of marine diazotrophs is important in order to assess their role in the oceanic nitrogen cycle. Environmental DNA samples from four cruises to the North Atlantic Ocean, covering a sampling area of 0°N to 42°N and 67°W to 13°W, were analyzed for the presence and amount of seven nifH phylotypes using real-time quantitative PCR and TaqMan probes. The cyanobacterial phylotypes dominated in abundance (94% of all nifH copies detected) and were the most widely distributed. The filamentous cyanobacterial type, which included both Trichodesmium and Katagnymene, was the most abundant (51%), followed by group A, an uncultured unicellular cyanobacterium (33%), and gamma A, an uncultured gammaproteobacterium (6%). Group B, unicellular cyanobacterium Crocosphaera, and group C Cyanothece-like phylotypes were not often detected (6.9% and 2.3%, respectively), but where present, could reach high concentrations. Gamma P, another uncultured gammaproteobacterium, was seldom detected (0.5%). Water temperature appeared to influence the distribution of many nifH phylotypes. Very high (up to 1 × 106 copies liter−1) nifH concentrations of group A were detected in the eastern basin (25 to 17°N, 27 to 30°W), where the temperature ranged from 20 to 23°C. The highest concentrations of filamentous phylotypes were measured between 25 and 30°C. The uncultured cluster III phylotype was uncommon (0.4%) and was associated with mean water temperatures of 18°C. Diazotroph abundance was highest in regions where modeled average dust deposition was between 1 and 2 g/m2/year

    Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer

    Get PDF
    The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore, inherited CPC variability could influence tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes encoding key CPC components and breast cancer risk. Fifteen SNPs in four CPC genes (INCENP, AURKB, BIRC5 and CDCA8) were genotyped in 88 911 European women from 39 case-control studies of the Breast Cancer Association Consortium. Possible associations were investigated in fixedeffects meta-analyses. The synonymous SNP rs1675126 in exon 7 of INCENP was associated with overall breast cancer risk per A allele odds ratio (OR) 0.95, 95% confidence interval (CI) 0.92-0.98, P = 0.007 and particularly with estrogen receptor (ER)-negative breast tumors (per A allele OR 0.89, 95% CI 0.83-0.95, P = 0.0005). SNPs not directly genotyped were imputed based on 1000 Genomes. The SNPs rs1047739 in the 3' untranslated region and rs144045115 downstream of INCENP showed the strongest association signals for overall (per T allele OR 1.03, 95% CI 1.00-1.06, P = 0.0009) and ER-negative breast cancer risk (per A allele OR 1.06, 95% CI 1.02-1.10, P = 0.0002). Two genotyped SNPs in BIRC5 were associated with familial breast cancer risk (top SNP rs2071214: per G allele OR 1.12, 95% CI 1.04-1.21, P = 0.002). The data suggest that INCENP in the CPC pathway contributes to ER-negative breast cancer susceptibility in the European population. In spite of a modest contribution of CPC-inherited variants to the total burden of sporadic and familial breast cancer, their potential as novel targets for breast cancer treatment should be further investigated. © The Author 2015
    corecore