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Abstract
The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore, inherited CPC variability could influence 
tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes 
encoding key CPC components and breast cancer risk. Fifteen SNPs in four CPC genes (INCENP, AURKB, BIRC5 and CDCA8) were genotyped in 88 911 
European women from 39 case-control studies of the Breast Cancer Association Consortium. Possible associations were investigated in fixed-
effects meta-analyses. The synonymous SNP rs1675126 in exon 7 of INCENP was associated with overall breast cancer risk [per A allele odds ratio 
(OR) 0.95, 95% confidence interval (CI) 0.92–0.98, P = 0.007] and particularly with estrogen receptor (ER)-negative breast tumors (per A allele OR 0.89, 
95% CI 0.83–0.95, P = 0.0005). SNPs not directly genotyped were imputed based on 1000 Genomes. The SNPs rs1047739 in the 3ʹ untranslated region 
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and rs144045115 downstream of INCENP showed the strongest association signals for overall (per T allele OR 1.03, 95% CI 1.00–1.06, P = 0.0009) and 
ER-negative breast cancer risk (per A allele OR 1.06, 95% CI 1.02–1.10, P = 0.0002). Two genotyped SNPs in BIRC5 were associated with familial breast 
cancer risk (top SNP rs2071214: per G allele OR 1.12, 95% CI 1.04–1.21, P = 0.002). The data suggest that INCENP in the CPC pathway contributes to 
ER-negative breast cancer susceptibility in the European population. In spite of a modest contribution of CPC-inherited variants to the total burden 
of sporadic and familial breast cancer, their potential as novel targets for breast cancer treatment should be further investigated.

Introduction
Breast cancer is the most commonly occurring epithelial malig-
nancy among women, with an estimated 1.4 million new cases 
and >450  000 deaths worldwide (1). Familial aggregation and 
twin studies have shown the substantial contribution of inher-
ited susceptibility to breast cancer (2,3). Many genetic loci have 
been identified that contribute to this familial risk (4), includ-
ing genes with high-penetrance mutations, notably BRCA1 and 
BRCA2, moderate penetrance genes including ATM, BRIP1, CHEK2 
and PALB2 and common lower penetrance alleles, of which >80 
have been identified so far. In total, these loci explain ~35% of 
the familial risk of breast cancer (5) leaving a large portion of 
the observed familial clustering of the disease unexplained (6).

The chromosomal passenger complex (CPC) is a key regu-
lator of mitosis and is essential for maintenance of genomic 
stability through its control of multiple processes during both 
nuclear and cytoplasmic division (cytokinesis) (7,8).

The core CPC is composed of the three non-enzymatic 
subunits, the microtubule-binding inner centromere protein 
(INCENP), survivin (baculoviral IAP repeat containing 5, BIRC5) 
and borealin (cell division cycle associated 8, CDCA8), which 
regulate the activity, localization and stability of the CPC’s cata-
lytic subunit, aurora kinase B (AURKB) (9). INCENP is the plat-
form on which the CPC assembles. The INCENP N-terminus 
forms a triple-helix bundle with the C-terminus of survivin and 
N-terminus of borealin (9) that is required for CPC localization 
to the centromere, anaphase spindle midzone and telophase 
midbody (9–12). AURKB binds to a conserved region (IN box) 
at the INCENP C-terminus (13). Strict localization of AURKB by 
CPC ensures that the kinase, which has >50 substrates (8), phos-
phorylates the correct targets at the proper steps in cell cycle 
progression.

Loss of CPC function results in lagging chromosomes during 
metaphase, leading to segregation errors, and in addition cleav-
age furrows fail to maintain ingression, resulting in cytokinesis 

failures (14–18). Moreover, lagging chromosomes can secondar-
ily cause cytokinesis failures during telophase. Furthermore, 
analyses of point mutations in CPC proteins reveal independent 
roles of these proteins in the initiation of cytokinesis (19–21). 
Disturbed CPC function may also be caused by overexpression 
of CPC subunits and by deregulation of its regulatory kinases 
and phosphatases. Indeed, high expression levels of INCENP 
were observed in colorectal cancer cell lines (22), whereas high 
expression levels of survivin (23) and AURKB (24,25) have been 
found in various cancers including breast cancer and shown to 
be associated with poor prognosis (26,27).

Given the key role of the CPC in maintaining genomic sta-
bility and the facts that chromosome segregation error (28,29) 
and overexpression of CPC components are frequently seen in 
human cancers, we hypothesize that genetic variants in the core 
CPC genes INCENP, AURKB, BIRC5 and CDCA8 affect breast cancer 
susceptibility. Thus, the primary aim of this investigation was to 
assess possible associations between selected tag single nucleo-
tide polymorphisms (SNPs) and potentially functional SNPs in 
four CPC genes and breast cancer risk. Subsequently, in silico 
analyses of SNP function and gene expression were carried out 
to provide supportive evidence of the identified risk variants. 
The secondary aim was to explore genetic associations with the 
survival of breast cancer patients.

Materials and methods

Study participants
Study subjects were 88 911 women of European ancestry from 39 case-
control studies participating in the Breast Cancer Association Consortium 
(BCAC). All BCAC studies had local ethical approvals and all included indi-
viduals gave informed consent (5). Seventeen SNPs were selected for geno-
typing including 12 tag SNPs for INCENP, three potentially functional SNPs 
in AURKB, BIRC5 and CDCA8, one SNP in AURKB previously reported to be 
associated with familial breast cancer risk (30) and one SNP in BIRC5 previ-
ously reported to be correlated with survivin expression (31). SNP genotyp-
ing in the BCAC samples was conducted using a custom Illumina Infinium 
array (iCOGS) in four centers, as part of a multiconsortia collaboration [the 
Collaborative Oncological Gene-environment Study (COGS)] (5). Genotypes 
were called using Illumina’s proprietary GenCall algorithm. Quality con-
trol included checks on call rate, heterozygosity and Hardy–Weinberg 
equilibrium. Details on BCAC studies and the SNP selection approach can 
be found in Supplementary Materials and Methods and in Supplementary 
Tables S1 and S2, available at Carcinogenesis Online.

Statistical analyses

Single SNP association analysis 
The BCAC provided genotype data along with the first 7 genetic principal 
components to allow adjustment for population stratification (the first 6 
components based on ~37 000 uncorrelated polymorphisms plus a seventh 
specifically derived for the Leuven Multidisciplinary Breast Centre study). 
Available phenotype data included disease status, hormone receptor status, 
family history and survival information. The association between genotypes 
and overall breast cancer risk was investigated in an individual-based fixed-
effects model meta-analysis comprising 88  911 study subjects. Per allele 
odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were 
estimated by logistic regression in a model that incorporated study and the 
first 7 principal genetic components as fixed effects. Study heterogeneity 

Abbreviations 

AIC  Akaike’s information criterion 
AURKB  aurora kinase B 
BCAC  Breast Cancer Association Consortium 
BIRC5  baculoviral IAP repeat containing 5
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 Study 
CPC  chromosomal passenger complex 
ER  estrogen receptor 
FRR  familial relative risk 
HER2  human epidermal growth factor receptor 2 
LD  linkage disequilibrium 
MAF  minor allele frequencies 
OS  overall survival 
PAF  population attributable fraction
RFS relapse-free survival 
SNP  single nucleotide polymorphism
TCGA  The Cancer Genome Atlas. 

D
ow

nloaded from
 https://academ

ic.oup.com
/carcin/article-abstract/36/2/256/334957 by guest on 26 February 2020

http://carcin.oxfordjournals.org/lookup/suppl/doi:10.1093/carcin/bgu326/-/DC1
http://carcin.oxfordjournals.org/lookup/suppl/doi:10.1093/carcin/bgu326/-/DC1
http://carcin.oxfordjournals.org/lookup/suppl/doi:10.1093/carcin/bgu326/-/DC1
http://carcin.oxfordjournals.org/lookup/suppl/doi:10.1093/carcin/bgu326/-/DC1


260 | Carcinogenesis, 2015, Vol. 36, No. 2

was assessed by the I2 index. Forest plots were generated and the nearest 
neighbor method based on the medians of the seven first genetic principal 
components was used to cluster studies according to genetic similarity.

To assess the familial breast cancer risk, cases with a family history 
of breast cancer in a first-degree relative were compared with all controls 
using an additive logistic regression model adjusted for study and the first 
7 principal genetic components.

A case-only analysis was carried out to explore whether SNPs in CPC 
genes are associated with the hormone receptor status of the tumor [estro-
gen receptor (ER)-positive/negative, progesterone receptor (PR)-positive/
negative and human epidermal growth factor receptor 2 (HER2)-positive/
negative].

Survival information was available for only ~65% of all cases. The 
relationship between genotype and overall survival (OS), breast-cancer-
specific survival and relapse-free survival (RFS) was investigated in cases, 
which did not represent with distant metastases at diagnosis. OS was 
defined as the time between breast cancer diagnosis and death or last 
follow-up, whichever occurred first. For breast-cancer-specific survival, 
only deaths from breast cancer according to International Classification 
of Diseases, 10th Revision code counted as events, whereas deaths from 
any other cause were censored.  RFS was defined as the time between 
breast cancer diagnosis and locoregional relapse or relapse of distant 
metastasis after a period of remission, whichever occurred first. Survival 
times were censored after 15 years (for OS and breast-cancer-specific sur-
vival) and 10 years (for RFS). If cases were diagnosed before study entry, 
survival times were left truncated. Survival analyses were performed by 
Cox regression models incorporating study and the seven genetic princi-
pal components as fixed effects. Per allele hazard ratios and correspond-
ing 95% CIs were reported. In addition Kaplan–Meier estimates of survival 
were plotted stratified by genotype, and genotype-specific estimated 10 
year (for OS and BCCS) and 5 year (for RFS) survival rates were reported.

If an association with the hormone receptor status of the tumor was 
detected, the subtype-specific disease risk and survival was investigated 
as well.

Haplotype analysis
Pairwise linkage disequilibrium (LD) between INCENP SNPs was measured 
by r2 and a LD heat map was generated. Based on different combinations 
of SNPs and taking the LD block structure into account, we inferred hap-
lotypes using the expectation-maximization algorithm. Haplotype fre-
quencies were calculated. Subsequently, the association between most 
frequent haplotypes and overall breast cancer risk was analyzed by a 
logistic regression model adjusted for study and the seven principal com-
ponents. The model fit was evaluated by Akaike’s information criterion 
(AIC) in order to identify the optimal SNP combination, where the smallest 
AIC value represents the best model. Haplotype-specific ORs and corre-
sponding 95% CIs were also estimated.

Interaction and pathway analysis
In order to assess the interaction effects of SNPs in different CPC genes 
on the risk of breast cancer, we carried out a SNP–SNP interaction analy-
sis. The multiplicative interaction index and the interaction contrast ratio 
were calculated, and deviation from multiplicativity and additivity was 
tested based on Wilcoxon signed-rank tests. The 95% CIs were computed 
by bootstrapping with 10 000 simulations. To investigate whether SNPs in 
genes of the CPC pathway are jointly associated with overall breast cancer 
risk, P-values from single SNP analyses were summarized into one com-
bined P-value using Fisher’s method for independent tests.

Imputation of genotypes
Multiple imputation of genotypes was performed based on all genotyped 
INCENP SNPs, to detect associations with not directly genotyped but poten-
tially causal SNPs. The European subpopulations from the 1000 Genomes 
Project phase 1 were used as reference panel (32). Genotypes of only 
SNPs were imputed in a region centered on the INCENP gene. The extent 
of this region was identified by visual inspection of recombination rates 
and, spanned at least ±150 kb starting from the first and last reference 
SNP. A logistic regression model adjusted for study and the seven genetic 
principal components was applied in subsequent association analyses for 
imputed genotypes summarized by minus the logarithm of the P-value. 

A gene map of the investigated region was created together with a LD map 
relying on pairwise r2 values for imputed and reference SNPs.

Population attributable fraction and familial risk
The population attributable fraction (PAF) was calculated for the SNP 
showing the strongest association with overall breast cancer risk in order 
to quantify the proportion of sporadic cases related to the risk variant. 
Also the familial relative risk (FRR), which reflects the attributable propor-
tion of familial cases, was estimated. The calculation of PAF and FRR relied 
on the estimated ORs and minor allele frequencies (MAF), together with 
an assumed prevalence of breast cancer in the general population equal 
to 7.8% until the age of 74 (33,34). Subsequently, the obtained PAF and FRR 
of INCENP were compared with the PAFs and FRRs of previously identified 
breast cancer susceptibility variants. Considered susceptibility variants 
included high-penetrance mutations in BRCA1 and BRCA2 (6), moderate 
penetrance variants in ATM, BRIP1, CHEK2 and PALB2 (6,35) as well as 80 
low-penetrance variants throughout the genome (4).

Expression quantitative trait loci analysis 
We examined whether identified risk variants influence gene expres-
sion. Information from HapMap, NCBI’s Gene Expression Omnibus and 
The Cancer Genome Atlas (TCGA) was exploited (36,37). For 60 unrelated 
Utah residents with northern and western European ancestry from the 
CEPH collection (CEU population), genotype data were available from the 
International HapMap project. Expression data derived from Epstein-Barr 
virus-transformed lymphoblastoid cell lines of the same individuals have 
been made public through Gene Expression Omnibus. The breast cancer 
study (BRCA) from TCGA provides germline DNA genotypes as well as 
expression data for tumor and matched normal breast tissue samples. 
All eQTL analyses involved a two-sided Kruskal–Wallis test. Differences in 
expression levels between normal and tumor breast tissue samples were 
analyzed with a two-sided Wilcoxon–Mann–Whitney test. 

Functional SNP analysis
In order to explore the functional significance of identified risk variants, 
the R package FunciSNP was used to examine in silico annotations with 
chromatin features available in ENCODE (38,39). The list of examined 
functional characteristics included five built-in biofeatures [CTCF bind-
ing sites, DNaseI hypersensitivity sites, formaldehyde-assisted isolation of 
regulatory elements signals and known promoter regions] across several 
cell lines as well as 57 biofeatures (DNaseI hypersensitivity sites, formal-
dehyde-assisted isolation of regulatory elements signals, transcription 
factor binding sites, methylation sites, Chromatin State Segmentation by 
HMM (ChromHMM) and histone modifications by Chip-seq) specifically 
downloaded for HMEC normal mammary epithelial cells and breast can-
cer cell lines MCF7 and T47D. Functional SNP analyses were carried out 
for variants in a 300 kb window centered on the SNP with the strongest 
association.

Results
Eight tag SNPs (including three surrogates) out of 12 originally 
selected tag SNPs for INCENP were genotyped by the BCAC. 
Additional genotype data were provided for one upstream and 
one downstream SNP of INCENP. Five SNPs (including one sur-
rogate) out of five originally selected SNPs for AURKB, BIRC5 
and CDCA8 were genotyped. A description of all 15 SNPs gen-
otyped for INCENP, AURKB, BIRC5 and CDCA8 can be found in 
Supplementary Table S2, available at Carcinogenesis Online.

Associations of SNPs in CPC genes with breast 
cancer risk and survival

A total of 88  911 European women (46  450 cases and 42  461 
controls) from 39 BCAC studies were included in associa-
tion analyses. Reported probability values were not adjusted 
for multiplicity, they should be interpreted considering that 
4 genes and 15 partially linked variants were simultaneously 
investigated.
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Five INCENP SNPs (top SNP rs1675126) were associated with 
a decreased overall breast cancer risk. Women with variant 
rs1675126 showed the largest breast cancer risk reduction (per 
minor A allele OR 0.95, 95% CI 0.92–0.98, P = 0.007). The two SNPs 
rs4963459 and rs4963471, located, respectively, upstream and 
downstream of INCENP were associated with overall breast can-
cer risk as well (rs4963459: per minor A allele OR 1.02, 95% CI 
1.00–1.04, P = 0.021; rs4963471: per minor G allele OR 1.03, 95% CI 
1.01–1.05, P = 0.003). Association results for overall breast cancer 
risk of all SNPs in INCENP are shown in Table 1. There was also a 
weak association of rs2306625 in CDCA8 with overall breast can-
cer risk (per minor A allele OR 0.97, 95% CI 0.95–0.99, P = 0.040; 
Table 2).

Figure  1A and B represents the clustering of studies by 
genetic similarity based on the first genetic principal compo-
nents. The forest plot on the association with overall breast can-
cer risk for the top SNP rs1675126 is shown in Figure  1B. The 
reflection of the geographical study distribution was evident. 
However, a regional clustering of OR estimates was not obvious. 
Study heterogeneity was not apparent (I2 = 0%).

The familial breast cancer risk was increased for women with 
variants rs2071214 and rs3764384 in BIRC5 (rs2071214: per minor 
G allele OR 1.12, 95% CI 1.04–1.21, P = 0.002; rs3764384: per minor 
A allele OR 1.04, 95% CI 1.00–1.08, P = 0.043; Supplementary Table 
S3, available at Carcinogenesis Online).

Case-only analysis revealed that four INCENP SNPs, which 
were associated with overall breast cancer risk, showed differ-
ential association according to ER (top SNP rs1675126: per minor 
A allele OR 1.09, 95% CI 1.01–1.16, P = 0.012), but not to PR or HER2 
tumor status (Table 3). Subsequent analysis of subtype-specific 
disease risk revealed that five INCENP SNPs (top SNP rs1675126) 
showed stronger associations with risk of ER-negative breast 
tumors than with overall breast cancer risk. Women with vari-
ant rs1675126 showed the largest reduction in risk of developing 
ER-negative tumors (per minor A allele OR 0.89, 95% CI 0.83–0.95, 
P = 0.0005). This observed association was the strongest among 
all breast cancer risk analyses and remained statistically sig-
nificant after correction for multiple testing. The Bonferroni-
adjusted P-value was P = 0.04 (0.0005*75 – considering 15 tests 
on overall breast cancer risk, 15 tests on familial breast cancer 
and 15 tests for each of the three hormone receptors). The large 
sample size of the present association study provided sufficient 
statistical power to detect small differences between cases and 
controls in allele frequencies. Table 1 displays association results 
for all INCENP SNPs stratified by ER status. The forest plot on the 
association with ER-negative breast cancer risk for the top SNP 
rs1675126 is shown in Figure 1C. The CDCA8 SNP rs2306625 was 
associated with HER2 (per minor A OR 0.95, 95% CI 0.91–0.99, P = 
0.033), but not with ER or PR tumor status (Table 3). No associa-
tion of rs2306625 with risk of HER2-positive or negative breast 
tumors was observed (Supplementary Table S4, available at 
Carcinogenesis Online).

No survival association—either with overall, breast cancer 
specific or relapse-free survival—was observed for the SNPs 
in INCENP, AURKB and BIRC5. The investigated SNP in CDCA8 
was associated with relapse-free survival. Patients with vari-
ant rs2306625 showed an increased risk of relapse (per minor 
A  allele hazard ratio 1.17, 95% CI 1.05–1.31, P = 0.004, 89% of 
the survival times were censored). The 5 year RFS rate was 0.90 
(95% CI 0.89–0.91) for patients homozygous for the common 
allele, 0.89 (95% CI 0.88–0.91) for heterozygotes and 0.88 (95% 
CI 0.83–0.91) for patients homozygous for the minor allele. The 
association of rs2306625 with relapse-free survival was stronger 
when cases with a HER2-positive tumor were compared with all 

controls (per minor A allele hazard ratio 1.56, 95% CI 1.12–2.17, 
P = 0.008, 84% of the survival times were censored). The results 
from survival analysis of all SNPs in CPC genes are displayed 
in Supplementary Tables S5–S8, available at Carcinogenesis 
Online. The relapse-free survival stratified by CDCA8 rs2306625 
genotype is shown in Supplementary Figure S1, available at 
Carcinogenesis Online.

Associations of INCENP haplotypes with overall 
breast cancer risk

The five INCENP SNPs that were singly associated with a 
decreased overall breast cancer risk were in high LD (r2 
> 0.8) and located in two LD blocks comprising a region of 
~12 kb (Supplementary Figure S2, available at Carcinogenesis 
Online). Haplotypes were estimated for these SNPs in order 
to assess their synergistic effect on breast cancer risk. First, 
the SNPs were ordered according to their P-values obtained 
from overall breast cancer risk analysis. Haplotypes were 
then inferred for (i) the top two SNPs, (ii) the top three SNPs 
and (iii) all five SNPs. Among all assessed SNP combinations, 
the model fit was best for the combination of the top three 
SNPs (AIC = 238222.1), but did not improve the model fit for 
rs1675126 alone (AIC = 119150.0). The haplotype frequencies 
and haplotype-specific estimates for all assessed SNP combi-
nations are displayed in Supplementary Table S9, available at 
Carcinogenesis Online.

Results from interaction and pathway analyses are presented 
in the Supplementary Results, available at Carcinogenesis Online.

Genotype imputation of untyped SNPs in the 
INCENP region

Since several genotyped INCENP SNPs were associated with 
overall and ER-negative breast cancer risk, association map-
ping was refined by imputing additional variants. The ref-
erence panel for imputation comprised 379 individuals of 
the European subpopulations CEU, TSI (Toscani in Italia), 
GBR (British from England and Scotland), FIN (Finnish from 
Finland) and IBS (Iberian populations from Spain) from the 
1000 Genomes Project. After visual inspection of recombination 
rates, an ~465 kb region (from 61 735 132 to 62 201 016 of chro-
mosome 11, NCBI build 37) centered on INCENP and comprising 
6282 SNPs was selected for genotype imputation. A total of 5078 
SNPs fulfilled genotype heterozygosity and were imputed with 
high accuracy (99.1% median average certainty of best-guess 
genotypes). Subsequent association analysis revealed that the 
strongest signal for the association with overall breast cancer 
risk was obtained for rs1047739 (per minor T allele OR 1.03, 95% 
CI 1.00–1.06, P = 0.0009; Figure 2A). A marginal differential asso-
ciation according to ER tumor status was detected for rs1047739 
(per minor T allele OR 1.04, 95% CI 1.00–1.08, P = 0.005), but 
rs144045115 showed the strongest association signal for the 
association with ER-negative breast cancer risk (per minor 
A allele OR 1.06, 95% CI 1.02–1.10, P = 0.0002; Figure 2B). The two 
variants are located in the 3ʹ untranslated region and down-
stream of INCENP. A gene map, recombination rates and LD in 
the investigated INCENP region are represented in Figure 2C, D 
and E, respectively.

PAF and FRR related to the top INCENP SNP 
associated with overall breast cancer risk

PAFs and FRRs for INCENP SNP rs1047739 compared with previ-
ously identified susceptibility variants are displayed in Figure  3. 
Rs1047739 showed a per allele OR of 1.03 for the association with 
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Table 2. Association between SNPs in AURKB, BIRC5 and CDCA8 and breast cancer risk

Gene SNP Genotype Controls, N (%)

Overall breast cancer risk

Cases, N (%) Per allele ORa (95% CI) P-valueb

AURKB rs1059476 GG 33 953 (80.0) 37 051 (79.8) 0.94 (0.97–1.00) 0.154
AG 7966 (18.7) 8818 (19.0)
AA 523 (1.2) 568 (1.2)

rs2241909 AA 18 882 (44.5) 20 753 (44.7) 0.98 (0.96–1.00) 0.196
AG 18 844 (44.4) 20 508 (44.2)
GG 4687 (11.1) 5135 (11.1)

BIRC5 rs2071214 AA 37 965 (89.4) 41 512 (89.4) 1.02 (0.98–1.06) 0.293
AG 4356 (10.3) 4792 (10.3)
GG 139 (0.3) 145 (0.3)

rs3764384 GG 19 315 (45.5) 20 958 (45.1) 1.00 (0.98–1.02) 0.602
AG 18 690 (44.0) 20 492 (44.1)
AA 4449 (10.5) 4991 (10.8)

CDCA8 rs2306625 GG 28 220 (66.5) 31 003 (66.8) 0.97 (0.95–0.99) 0.040
AG 12 698 (29.9) 13 821 (29.8)
AA 1526 (3.6) 1590 (3.4)

Probability values <5% are shown in bold.

aOR adjusted for a fixed study effect and the first 7 principal components.

bProbability value based on logistic regression and an additive model.

Figure 1. (A) Clustering of studies based on the first genetic principal components. The distance between merged studies reflects their genetic similarity. (B) Forest 

plot for the association between rs1675126 and overall breast cancer risk. (C) Forest plot for the association between rs1675126 and ER-negative breast cancer risk.
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overall breast cancer risk and a MAF of 0.24. Assuming a cumula-
tive risk of breast cancer in the European Union of 7.8% until the 
age of 74, rs1047739 results in a PAF of 1.4% and a FRR of 1.0. In 
comparison with other susceptibility variants, the INCENP SNP 

rs1047739 contributed to a higher PAF than any rare variant in 
BRCA1, BRCA2, ATM, BRIP1, CHEK2 or PALB2. Most recently identified 
common susceptibility variants showed larger PAFs and FRRs than 
rs1047739, where FGFR2 rs2981579 showed the second highest PAF 

Figure 2. (A) Association between overall breast cancer risk and genotyped (black) and imputed (gray) SNPs in the greater INCENP region. (B) Association between ER-

negative breast cancer risk and genotyped (black) and imputed (gray) SNPs in the greater INCENP region. Both plots show the –log10 P-values based on logistic regression 

adjusted for study and seven principal components. Only imputed SNPs with MAF > 0.01 are depicted. The imputed SNPs with the smallest P-value (rs1047739 and 

rs144045115) are shown as gray triangles. (C) Gene map including all genes in the investigated region. (D) Recombination rates in the investigated region. Chromosomal 

positions refer to NCBI build 37. (E) LD heatmap based on genotype data retrieved from the European subpopulations from HapMap phase 3 showing pairwise r2 values 

[from 0 (white) to 1 (black)].

D
ow

nloaded from
 https://academ

ic.oup.com
/carcin/article-abstract/36/2/256/334957 by guest on 26 February 2020



266 | Carcinogenesis, 2015, Vol. 36, No. 2

after PTHLH rs10771399 and the highest FRR among all common 
variants. The updated list of breast cancer susceptibility variants 
along with the corresponding ORs, MAFs, PAFs and FRRs are listed 
in Supplementary Table S10, available at Carcinogenesis Online.

Associations of INCENP SNPs with gene expression

All variants located between the upstream SNP rs4963459 and 
the downstream SNP rs4963471 of INCENP, including 103 SNPs 
available for 60 HapMap individuals (expression in lympho-
blastoid cells) and 34 SNPs available for 447 TCGA individuals 
(expression in 60 normal breast tissue samples and 387 tumor 
breast tissue samples), were examined regarding their impact 
on gene expression. The mean expression level was −2.84 (±0.54) 
in the complete set of normal breast tissue samples and −1.88 
(±0.80) in the complete set of tumor breast tissue samples (P < 
0.0001). Two SNPs [expected five (103 × 0.05)] were associated 
with gene expression in lymphoblastoid cells and one SNP 
[expected two (34 × 0.05)] was associated with gene expression 
in normal breast tissue. All of these three SNPs were also associ-
ated with overall and ER-negative breast cancer risk. Nine SNPs 
[expected two (34 × 0.05)] were associated with gene expression 
in tumor breast tissue. However, none of these were associated 
with risk of breast cancer. Distribution of INCENP expression 
levels per SNP genotypes is displayed in Supplementary Figure 
S3, available at Carcinogenesis Online.

Potential functional INCENP SNPs

The INCENP SNP rs1047739 was annotated with three histone mod-
ifications by H3K27me3, H3K36me3 and H4K20me1, indicating an 

actively transcribed and accessible chromatin region that marks 
RNA polymerase II elongation and a silenced promoter. Moreover, 
rs1047739 overlapped with the chromatin state of transcriptional 
elongation. Altogether, the 15 variants tightly linked (r2 ≥ 0.8) to 
SNP rs1047739 showed features consistent to open chromatin, 
promoter silencing, blocked enhancer activity and repressed gene 
expression. Detailed information is presented in Supplementary 
Table S11, available at Carcinogenesis Online.

Discussion
This is the first study that investigates whether genetic variabil-
ity in genes of the core CPC including INCENP, AURKB, BIRC5 and 
CDCA8 may affect primarily the overall, familial and subtype-
specific breast cancer risk and secondarily the survival.

The INCENP protein of the CPC is a scaffold protein that 
comprises two functional subunits: The N-terminus binds to 
BIRC5 and CDCA8, which is required for the localization of the 
complex to the centromeres of chromosomes, whereas the con-
served C-terminus binds AURKB partly activating the kinase. 
This allows AURKB to phosphorylate a C-terminal Thr-Ser-Ser 
motif in INCENP and a Thr in the T-loop of its kinase domain, 
resulting in full AURKB activation (40,41). INCENP is phospho-
rylated not only by AURKB but also by Cdk1, which is involved 
in Polo-like kinase 1 recruitment to the kinetochores and also 
in the progression from metaphase to anaphase (42).  Yet, the 
molecular mechanisms by which SNPs in INCENP and other CPC 
genes influence breast cancer risk are unknown.

We found that several genotyped and imputed SNPs within 
and downstream of INCENP were associated with overall 

Figure 3. PAFs versus FRRs for all breast cancer susceptibility variants of low, moderate and high penetrance (gray dots). The top imputed INCENP SNP rs1047739 is 

shown as a black dot.
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and particularly with ER-negative breast cancer risk. The SNP 
rs1675126 showed the strongest association signal with over-
all and ER-negative breast cancer risk among all genotyped 
INCENP SNPs. The association with ER-negative breast cancer 
risk is of particular interest. Only 20–25% of all breast tumors 
are ER-negative. ER-negative breast cancer is often diagnosed 
at an earlier age and has a worse prognosis than ER-positive 
breast cancer. So far, seven loci specifically associated to 
ER-negative breast cancer susceptibility have been identified 
(43). The imputed SNP that showed the strongest association 
signal in the overall breast cancer risk analysis was rs1047739 
located in the 3ʹ untranslated region. Even though rs1047739 
showed also a differentiated association regarding ER tumor 
status, imputed rs144045115 downstream of INCENP showed 
the strongest association with ER-negative breast cancer risk. 
In silico analyses indicated that rs1047739 is located in an acces-
sible chromatin region actively transcribed and that three miR-
NAs (has-miR-346, has-miR-632 and has-miR-654-3P predicted 
by Targetscan and MicroCosm Targets 5) bind to the rs1047739 
containing region, suggesting that it may be the causal variant. 
The exact molecular mechanisms of how rs1047739 influences 
INCENP transcription should be further investigated in vitro. It 
has been previously reported that expression levels of INCENP 
are increased in tumor cells (22). This is in line with our finding 
that INCENP expression was increased in tumor breast tissue 
samples compared with normal breast tissue samples based on 
data from TCGA.

In a previous publication, rs2241909 in AURKB was associ-
ated with familial breast cancer risk in a German study pop-
ulation (30). We could not replicate this association in our 
present large data set from several European study popula-
tions. Instead we observed that the two SNPs rs3764384 and 
rs2071214 in BIRC5 were associated with familial breast can-
cer risk. It was also observed that rs2306625 in CDCA8 was 
particularly associated with relapse-free survival. Therefore, 
rs2306625 may eventually influence both the risk of disease 
onset and in case of tumor development the pathological char-
acteristics of the tumor and/or its response to treatment. The 
per G allele increased risk and better-prognosis finding would 
contrast with BRCA1/2 mutations in breast cancer (44), but 
would mimic on the other hand mutations of mismatch repair 
genes in colorectal cancer (45).

Low recombination rates downstream of INCENP allowed for 
genotype imputation in the region of six secretoglobin genes 
(SCGBs) taking 10 genotyped INCENP SNPs as reference. SCGBs are 
members of a supergene family and most of them are localized 
in a dense cluster on chromosome 11q13 including SCGB1D1, 
SCGB1D2, SCGB2A1, SCGB2A2, SCGB1D4 and SCGB1A1 (46). The 
SCGBs encode small secretory proteins and seem to play a role in 
the modulation of inflammation, tissue repair and tumorigen-
esis. Some SCBGs are overexpressed in breast cancer (47–49) and 
are more frequently associated with ER-positive tumors (50,51). 
Interestingly, imputation results indicated variants in the region 
of SCGB1D1 throughout SCGB1A1, which were associated with 
overall breast cancer risk [top SNP rs3781965 (located in intron 
2 of SCGB1D1): per minor T allele OR 1.02, 95% CI 1.00–1.04, P 
= 0.001], whereas associations with ER-negative tumors were 
detected only for the upstream and gene region of SCGB1D1 [top 
SNP rs2232935 (located upstream of SCGB1D1): per minor T allele 
OR 1.05, 95% CI 1.02–1.09, P = 0.0003]. Even though the biologi-
cal functions of SCGB products are still poorly understood and 
variants in the 3ʹ region of INCENP showed stronger association 
signals in breast cancer risk analysis, initial results on the possi-
ble association between inherited variation in SCGBs and breast 

cancer susceptibility should be explored based on directly typed 
variants in future consortial work.

In conclusion, taking advantage of BCAC and COGS efforts 
that translated into a homogeneous, high-quality genotyping of 
88 911 women from 39 European studies, we were able to iden-
tify potential novel variants in the INCENP gene, which associ-
ated with a 3% per allele increased risk of breast cancer, and 
with a 6% per allele increased risk of ER-negative breast tumors. 
This study demonstrates the benefit of scientific collaborations 
leading to large sample collections in order to identify low-pen-
etrance variants, in particular for disease subtypes. It is likely 
that next generation sequencing in combination with the inte-
gration of information on additional layers of genetic variability 
will refine marker association signals and unravel increasing 
proportions of sporadic and familial cases of disease. In paral-
lel, the identification of new susceptibility variants may point 
to novel drug targets. Due to the established involvement in the 
regulation of cell division, this is probably the most relevant 
aspect of the identified associations between CPC variants and 
breast cancer.

Supplementary material
Supplementary Materials and methods, Results, Tables S1–S11 
and Figures S1–S3 can be found at http://carcin.oxfordjournals.
org/ 
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