357 research outputs found

    Glucagon-like peptide 1 improved glycemic control in type 1 diabetes

    Get PDF
    BACKGROUND: Glucagon-like peptide-1 (GLP-1) and its agonists are under assessment in treatment of type 2 diabetes, by virtue of their antidiabetic actions, which include stimulation of insulin secretion, inhibition of glucagon release, and delay of gastric emptying. We examined the potential of GLP-1 to improve glycemic control in type 1 diabetes with no endogenous insulin secretion. METHODS: Dose-finding studies were carried out to establish mid range doses for delay of gastric emptying indicated by postponement of pancreatic polypeptide responses after meals. The selected dose of 0.63 micrograms/kg GLP-1 was administered before breakfast and lunch in 8-hour studies in hospital to establish the efficacy and safety of GLP-1. In outside-hospital studies, GLP-1 or vehicle was self-administered double-blind before meals with usual insulin for five consecutive days by five males and three females with well-controlled C-peptide-negative type 1 diabetes. Capillary blood glucose values were self-monitored before meals, at 30 and 60 min after breakfast and supper, and at bedtime. Breakfast tests with GLP-1 were conducted on the day before and on the day after 5-day studies. Paired t-tests and ANOVA were used for statistical analysis. RESULTS: In 8-hour studies time-averaged incremental (delta) areas under the curves(AUC) for plasma glucose through 8 hours were decreased by GLP-1 compared to vehicle (3.2 ± 0.9, mean ± se, vs 5.4 ± 0.8 mmol/l, p < .05), and for pancreatic polypeptide, an indicator of gastric emptying, through 30 min after meals (4.0 ± 3.1 vs 37 ± 9.6 pmol/l, p < .05) with no adverse effects. Incremental glucagon levels through 60 min after meals were depressed by GLP-1 compared to vehicle (-3.7 ± 2.5 vs 3.1 ± 1.9 ng/l, p < .04). In 5-day studies, AUC for capillary blood glucose levels were lower with GLP-1 than with vehicle (-0.64 ± 0.33 vs 0.34 ± 0.26 mmol/l, p < .05). No assisted episode of hypoglycaemia or change in insulin dosage occurred. Breakfast tests on the days immediately before and after 5-day trials showed no change in the effects of GLP-1. CONCLUSION: We have demonstrated that subcutaneous GLP-1 can improve glucose control in type 1 diabetes without adverse effects when self-administered before meals with usual insulin during established intensive insulin treatment programs

    Age-Dependent Decline in β-Cell Proliferation Restricts the Capacity of β-Cell Regeneration in Mice

    Get PDF
    ObjectiveThe aim of this study was to elucidate whether age plays a role in the expansion or regeneration of beta-cell mass.Research design and methodsWe analyzed the capacity of beta-cell expansion in 1.5- and 8-month-old mice in response to a high-fat diet, after short-term treatment with the glucagon-like peptide 1 (GLP-1) analog exendin-4, or after streptozotocin (STZ) administration.ResultsYoung mice responded to high-fat diet by increasing beta-cell mass and beta-cell proliferation and maintaining normoglycemia. Old mice, by contrast, did not display any increases in beta-cell mass or beta-cell proliferation in response to high-fat diet and became diabetic. To further assess the plasticity of beta-cell mass with respect to age, young and old mice were injected with a single dose of STZ, and beta-cell proliferation was analyzed to assess the regeneration of beta-cells. We observed a fourfold increase in beta-cell proliferation in young mice after STZ administration, whereas no changes in beta-cell proliferation were observed in older mice. The capacity to expand beta-cell mass in response to short-term treatment with the GLP-1 analog exendin-4 also declined with age. The ability of beta-cell mass to expand was correlated with higher levels of Bmi1, a polycomb group protein that is known to regulate the Ink4a locus, and decreased levels of p16(Ink4a)expression in the beta-cells. Young Bmi1(-/-) mice that prematurely upregulate p16(Ink4a)failed to expand beta-cell mass in response to exendin-4, indicating that p16(Ink4a)levels are a critical determinant of beta-cell mass expansion.Conclusionsbeta-Cell proliferation and the capacity of beta-cells to regenerate declines with age and is regulated by the Bmi1/p16(Ink4a)pathway

    Antidiabetic Actions of Endogenous and Exogenous GLP-1 in Type 1 Diabetic Patients With and Without Residual β-Cell Function

    Get PDF
    OBJECTIVE—To investigate the effect of exogenous as well as endogenous glucagon-like peptide 1 (GLP-1) on postprandial glucose excursions and to characterize the secretion of incretin hormones in type 1 diabetic patients with and without residual b-cell function. RESEARCH DESIGN AND METHODS—Eight type 1 diabetic patients with (T1D+), eight without (T1D2) residual b-cell func-tion, and eight healthy matched control subjects were studied during a mixed meal with concomitant infusion of GLP-1 (1.2 pmol/kg/min), saline, or exendin 9-39 (300 pmol/kg/min). Before the meal, half dose of usual fast-acting insulin was injected. Plasma glucose (PG), glucagon, C-peptide, total GLP-1, intact glucose-dependent insulinotropic polypeptide (GIP), free fatty acids, triglycerides, and gastric emptying rate (GE) by plasma acetaminophen were measured

    Exenatide Sensitizes Insulin-Mediated Whole-Body Glucose Disposal and Promotes Uptake of Exogenous Glucose by the Liver

    Get PDF
    OBJECTIVE— Recent progress suggests that exenatide, a mimetic of glucagon-like peptide-1 (GLP-1), might lower glycemia independent of increased β-cell response or reduced gastrointestinal motility. We aimed to investigate whether exenatide stimulates glucose turnover directly in insulin-responsive tissues dependent or independent of insulinemia

    Resolving the Sources of Plasma Glucose Excursions following a Glucose Tolerance Test in the Rat with Deuterated Water and [U-13C]Glucose

    Get PDF
    Sources of plasma glucose excursions (PGE) following a glucose tolerance test enriched with [U-13C]glucose and deuterated water were directly resolved by 13C and 2H Nuclear Magnetic Resonance spectroscopy analysis of plasma glucose and water enrichments in rat. Plasma water 2H-enrichment attained isotopic steady-state within 2–4 minutes following the load. The fraction of PGE derived from endogenous sources was determined from the ratio of plasma glucose position 2 and plasma water 2H-enrichments. The fractional gluconeogenic contributions to PGE were obtained from plasma glucose positions 2 and 5 2H-positional enrichment ratios and load contributions were estimated from plasma [U-13C]glucose enrichments. At 15 minutes, the load contributed 26±5% of PGE while 14±2% originated from gluconeogenesis in healthy control rats. Between 15 and 120 minutes, the load contribution fell whereas the gluconeogenic contribution remained constant. High-fat fed animals had significant higher 120-minute blood glucose (173±6 mg/dL vs. 139±10 mg/dL, p<0.05) and gluconeogenic contributions to PGE (59±5 mg/dL vs. 38±3 mg/dL, p<0.01) relative to standard chow-fed controls. In summary, the endogenous and load components of PGE can be resolved during a glucose tolerance test and these measurements revealed that plasma glucose synthesis via gluconeogenesis remained active during the period immediately following a glucose load. In rats that were placed on high-fat diet, the development of glucose intolerance was associated with a significantly higher gluconeogenic contribution to plasma glucose levels after the load

    Gut Hormones and Appetite Control: A Focus on PYY and GLP-1 as Therapeutic Targets in Obesity

    Get PDF
    The global obesity epidemic has resulted in significant morbidity and mortality. However, the medical treatment of obesity is limited. Gastric bypass is an effective surgical treatment but carries significant perioperative risks. The gut hormones, peptide tyrosine tyrosine (PYY) and glucagon-like peptide 1 (GLP-1), are elevated following gastric bypass and have been shown to reduce food intake. They may provide new therapeutic targets. This review article provides an overview of the central control of food intake and the role of PYY and GLP-1 in appetite control. Key translational animal and human studies are reviewed
    corecore