12 research outputs found

    Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia

    Get PDF
    Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient–derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.This research was supported by the European Research Council (H2020) (CoG-2014-646903), the Agencia Estatal de Investigacion/European Re- ´ gional Development Fund (SAF2016-80481-R and SAF2016-75442-R), and the Catalunya Government (SGR330 and PERIS 2017) (P.M.), as well as the Asociacion Española Contra el C ´ ancer, Beca FERO, and the ´ ISCIII/FEDER (PI17/01028) (C.B.). P.M. also acknowledges institutional support from the Obra Social La Caixa-Fundacio Josep Carreras. J.G.P. ` holds a Miguel Servet contract (CP15/00014), and O.B.-L. is supported by an AGAUR-FI fellowship from the Catalan Government. P.M. is an investigator of the Spanish Cell Therapy cooperative network (TERCEL).Peer reviewe

    Impaired Condensin Complex and Aurora B kinase underlie mitotic and chromosomal defects in hyperdiploid B-cell ALL

    Get PDF
    B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, and high-hyperdiploidy (HyperD) identifies the most common subtype of pediatric B-ALL. Despite HyperD is an initiating oncogenic event affiliated to childhood B-ALL, the mitotic and chromosomal defects associated to HyperD B-ALL (HyperD-ALL) remain poorly characterized. Here, we have used 54 primary pediatric B-ALL samples to characterize the cellular-molecular mechanisms underlying the mitotic/chromosome defects predicated to be early pathogenic contributors in HyperD-ALL. We report that HyperD-ALL blasts are low proliferative and show a delay in early mitosis at prometaphase, associated to chromosome alignment defects at the metaphase plate leading to robust chromosome segregation defects and non-modal karyotypes. Mechanistically, biochemical, functional and mass-spectrometry assays revealed that condensin complex is impaired in HyperD-ALL cells, leading to chromosome hypocondensation, loss of centromere stiffness and mis-localization of the chromosome passenger complex proteins Aurora B Kinase (AURKB) and Survivin in early mitosis. HyperD-ALL cells show chromatid cohesion defects and impaired spindle assembly checkpoint (SAC) thus undergoing mitotic slippage due to defective AURKB and impaired SAC activity, downstream of condensin complex defects. Chromosome structure/condensation defects and hyperdiploidy were reproduced in healthy CD34+ stem/progenitor cells upon inhibition of AURKB and/or SAC. Collectively, hyperdiploid B-ALL is associated to defective condensin complex, AURKB and SAC

    Modulation of the endocannabinoids N-Arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) on Executive Functions in Humans

    Get PDF
    Animal studies point to an implication of the endocannabinoid system on executive functions. In humans, several studies have suggested an association between acute or chronic use of exogenous cannabinoids (Δ9-tetrahydrocannabinol) and executive impairments. However, to date, no published reports establish the relationship between endocannabinoids, as biomarkers of the cannabinoid neurotransmission system, and executive functioning in humans. The aim of the present study was to explore the association between circulating levels of plasma endocannabinoids N-arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) and executive functions (decision making, response inhibition and cognitive flexibility) in healthy subjects. One hundred and fifty seven subjects were included and assessed with the Wisconsin Card Sorting Test; Stroop Color and Word Test; and Iowa Gambling Task. All participants were female, aged between 18 and 60 years and spoke Spanish as their first language. Results showed a negative correlation between 2-AG and cognitive flexibility performance (r = −.37; p<.05). A positive correlation was found between AEA concentrations and both cognitive flexibility (r = .59; p<.05) and decision making performance (r = .23; P<.05). There was no significant correlation between either 2-AG (r = −.17) or AEA (r = −.08) concentrations and inhibition response. These results show, in humans, a relevant modulation of the endocannabinoid system on prefrontal-dependent cognitive functioning. The present study might have significant implications for the underlying executive alterations described in some psychiatric disorders currently associated with endocannabinoids deregulation (namely drug abuse/dependence, depression, obesity and eating disorders). Understanding the neurobiology of their dysexecutive profile might certainly contribute to the development of new treatments and pharmacological approaches

    Engraftment characterization of risk-stratified AML in NSGS mice

    Get PDF
    The authors thank Paola Romecin and Virginia Rodriguez-Cortez for technical assistance. This work was supported by the Spanish Ministry of Economy and Competitiveness (SAF2016-80481R, PID2019-108160RBI00), the Obra Social La Caixa (LCF/PR/HR19/52160011), Interreg V-A programme (POCTEFA) 2014-2020 (grant PROTEOblood EFA360/19), Health Canada (H4080-144541), and Deutsche Josep Carreras Leukämie Stiftung (P.M.). Additional funding was provided by Consejería de Salud y Familia (PI- 0119-2019) (R.D.d.l.G.), Health Institute Carlos III (ISCIII/FEDER, PI17/01028) and Asociación Española Contra el Cáncer (C.B.), Health Institute Carlos III/FEDER (CPII17/00032) (V.R.-M.), and Fundación Hay Esperanza (E.A.). CERCA/Generalitat de Catalunya and Fundación Josep Carreras-Obra Social la Caixa provided institutional support. B.L.-M. was supported by a Lady Tata Memorial Trust International Award and Asociación Española Contra el Cáncer (INVES20011LÓPE). O.M. and T.V.-H. were supported by Asociación Española Contra el Cáncer (INVES211226MOLI) and a Marie Sklodowska Curie Fellowship (792923), respectively. P.M. is an investigator in the Spanish Cell Therapy Network.Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Disease heterogeneity is well documented, and patient stratification determines treatment decisions. Patient-derived xenografts (PDXs) from risk-stratified AML are crucial for studying AML biology and testing novel therapeutics. Despite recent advances in PDX modeling of AML, reproducible engraftment of human AML is primarily limited to high-risk (HR) cases, with inconsistent or very protracted engraftment observed for favorable-risk (FR) and intermediate-risk (IR) patients. We used NSGS mice to characterize the engraftment robustness/kinetics of 28 AML patient samples grouped according to molecular/ cytogenetic classification and assessed whether the orthotopic coadministration of patientmatched bone marrow mesenchymal stromal cells (BM MSCs) improves AML engraftment. PDX event-free survival correlated well with the predictable prognosis of risk-stratified AML patients. The majority (85-94%) of the mice were engrafted in bone marrow (BM) independently of the risk group, although HR AML patients showed engraftment levels that were significantly superior to those of FR or IR AML patients. Importantly, the engraftment levels observed in NSGS mice by week 6 remained stable over time. Serial transplantation and long-term culture-initiating cell (LTC-IC) assays revealed long-term engraftment limited to HR AML patients, fitter leukemia-initiating cells (LICs) in HR AML samples, and the presence of AML LICs in the CD342 leukemic fraction, regardless of the risk group. Finally, orthotopic coadministration of patient-matched BM MSCs and AML cells was dispensable for BM engraftment levels but favored peripheralization of engrafted AML cells. This comprehensive characterization of human AML engraftment in NSGS mice offers a valuable platform for in vivo testing of targeted therapies in risk-stratified AML patient samples.Spanish Ministry of Economy and Competitiveness (SAF2016-80481R, PID2019-108160RBI00)Obra Social La Caixa (LCF/PR/HR19/52160011)Interreg V-A programme (POCTEFA) 2014-2020 (grant PROTEOblood EFA360/19)Health Canada (H4080-144541)Deutsche Josep Carreras Leukämie StiftungConsejer ıa de Salud y Familia (PI- 0119-2019)Health Institute Carlos III (ISCIII/FEDER, PI17/01028)Asociación Española Contra el CáncerHealth Institute Carlos III/FEDER (CPII17/00032)Fundación Hay EsperanzaCERCA/Generalitat de CatalunyaFundació Josep Carreras-Obra Social la CaixaLady Tata Memorial Trust International AwardAsociación Española Contra el Cáncer (INVES20011LÓPE)Asociación Española Contra el Cáncer (INVES211226MOLI)Marie Sklodowska Curie Fellowship (792923

    Overcoming CAR-Mediated CD19 Downmodulation and Leukemia Relapse with T Lymphocytes Secreting Anti-CD19 T-cell Engagers

    Get PDF
    Chimeric antigen receptor (CAR)-modified T cells have revolutionized the treatment of CD19-positive hematologic malignancies. Although anti-CD19 CAR-engineered autologous T cells can induce remission in patients with B-cell acute lymphoblastic leukemia, a large subset relapse, most of them with CD19-positive disease. Therefore, new therapeutic strategies are clearly needed. Here, we report a comprehensive study comparing engineered T cells either expressing a second-generation anti-CD19 CAR (CART19) or secreting a CD19/CD3-targeting bispecific T-cell engager antibody (STAb-T19). We found that STAb-T19 cells are more effective than CAR-T19 cells at inducing cytotoxicity, avoiding leukemia escape in vitro, and preventing relapse in vivo. We observed that leukemia escape in vitro is associated with rapid and drastic CAR-induced internalization of CD19 that is coupled with lysosome-mediated degradation, leading to the emergence of transiently CD19-negative leukemic cells that evade the immune response of engineered CAR-T19 cells. In contrast, engineered STAb-T19 cells induce the formation of canonical immunologic synapses and prevent the CD19 downmodulation observed in anti- CD19 CAR-mediated interactions. Although both strategies show similar efficacy in short-term mouse models, there is a significant difference in a long-term patient-derived xenograft mouse model, where STAb-T19 cells efficiently eradicated leukemia cells, but leukemia relapsed after CAR-T19 therapy. Our findings suggest that the absence of CD19 downmodulation in the STAb-T19 strategy, coupled with the continued antibody secretion, allows an efficient recruitment of the endogenous T-cell pool, resulting in fast and effective elimination of cancer cells that may prevent CD19-positive relapses frequently associated with CAR-T19 therapies

    IMiDs mobilize acute myeloid leukemia blasts to peripheral blood through downregulation of CXCR4 but fail to potentiate AraC/Idarubicin activity in preclinical models of non del5q/5q-AML

    Get PDF
    Treatment for acute myeloid leukemia (AML) remains suboptimal and many patients remain refractory or relapse upon standard chemotherapy based on nucleoside analogs plus anthracyclines. The crosstalk between AML cells and the BM stroma is a major mechanism underlying therapy resistance in AML. Lenalidomide and pomalidomide, a new generation immunomodulatory drugs (IMiDs), possess pleiotropic anti-leukemic properties including potent immune-modulating effects and are commonly used in hematological malignances associated with intrinsic dysfunctional BM such as myelodysplastic syndromes and multiple myeloma. Whether IMiDs may improve the efficacy of current standard treatment in AML remains understudied. Here, we have exploited in vitro and in vivo preclinical AML models to analyze whether IMiDs potentiate the efficacy of AraC/Idarubicin-based standard AML chemotherapy by interfering with the BM stroma-mediated chemoresistance. We report that IMiDs do not exert cytotoxic effects on either non-del5q/5q- AML cells nor BM-MSCs, but they enhance the immunomodulatory properties of BM-MSCs. When combined with AraC/Idarubicin, IMiDs fail to circumvent BM stroma-mediated resistance of non-del5q/5q- AML cells in vitro and in vivo but induce robust extramedullary mobilization of AML cells. When administered as a single agent, lenalidomide specifically mobilizes non-del5q/5q- AML cells, but not healthy CD34+ cells, to peripheral blood (PB) through specific downregulation of CXCR4 in AML blasts. Global gene expression profiling supports a migratory/mobilization gene signature in lenalidomide-treated non-del5q/5q- AML blasts but not in CD34+ cells. Collectively, IMiDs mobilize non-del5q/5q- AML blasts to PB through CXCR4 downregulation, but fail to potentiate AraC/Idarubicin activity in preclinical models of non-del5q/5q- AML.This work was supported by the European Research Council (CoG-2014-646903 to P.M), the Spanish Ministry of Economy and Competitiveness (SAF-SAF2013-43065, RTC-2016-4603-1 to P.M), the Asociación Española Contra el Cáncer (AECC-CI-2015), FERO Foundation, and the ISCIII/FEDER (PI14-01191) to C.B and the ‘‘Fundación Hay Esperanza’’ to E.A. P.M also acknowledges financial support from The Obra Social La Caixa-Fundaciò Josep Carreras, The Inocente Inocente Foundation and The Generalitat de Catalunya (SGR330). P.M an investigator of the Spanish Cell Therapy cooperative network (TERCEL). We thank Celgene Corporation (San Diego, CA) for providing IMiDs. We thank Judit Sopena and Mariano Graupera (IDIBELL, Barcelona) for their technical assistance with immunohistochamical analysi

    Integrative methylome-transcriptome analysis unravels cancer cell vulnerabilities in infant MLL-rearranged B cell acute lymphoblastic leukemia

    No full text
    B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. As predicted by its prenatal origin, infant B-ALL (iB-ALL) shows an exceptionally silent DNA mutational landscape, suggesting that alternative epigenetic mechanisms may substantially contribute to its leukemogenesis. Here, we have integrated genome-wide DNA methylome and transcriptome data from 69 patients with de novo MLL-rearranged leukemia (MLLr) and non-MLLr iB-ALL leukemia uniformly treated according to the Interfant-99/06 protocol. iB-ALL methylome signatures display a plethora of common and specific alterations associated with chromatin states related to enhancer and transcriptional control in normal hematopoietic cells. DNA methylation, gene expression, and gene coexpression network analyses segregated MLLr away from non-MLLr iB-ALL and identified a coordinated and enriched expression of the AP-1 complex members FOS and JUN and RUNX factors in MLLr iB-ALL, consistent with the significant enrichment of hypomethylated CpGs in these genes. Integrative methylome-transcriptome analysis identified consistent cancer cell vulnerabilities, revealed a robust iB-ALL–specific gene expression–correlating dmCpG signature, and confirmed an epigenetic control of AP-1 and RUNX members in reshaping the molecular network of MLLr iB-ALL. Finally, pharmacological inhibition or functional ablation of AP-1 dramatically impaired MLLr-leukemic growth in vitro and in vivo using MLLr-iB-ALL patient–derived xenografts, providing rationale for new therapeutic avenues in MLLr-iB-ALL

    Modulation of the endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) on executive functions in humans

    No full text
    Animal studies point to an implication of the endocannabinoid system on executive functions. In humans, several studies have suggested an association between acute or chronic use of exogenous cannabinoids (Δ9-tetrahydrocannabinol) and executive impairments. However, to date, no published reports establish the relationship between endocannabinoids, as biomarkers of the cannabinoid neurotransmission system, and executive functioning in humans. The aim of the present study was to explore the association between circulating levels of plasma endocannabinoids N-arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) and executive functions (decision making, response inhibition and cognitive flexibility) in healthy subjects. One hundred and fifty seven subjects were included and assessed with the Wisconsin Card Sorting Test; Stroop Color and Word Test; and Iowa Gambling Task. All participants were female, aged between 18 and 60 years and spoke Spanish as their first language. Results showed a negative correlation between 2-AG and cognitive flexibility performance (r = -.37; p<.05). A positive correlation was found between AEA concentrations and both cognitive flexibility (r = .59; p<.05) and decision making performance (r = .23; P<.05). There was no significant correlation between either 2-AG (r = -.17) or AEA (r = -.08) concentrations and inhibition response. These results show, in humans, a relevant modulation of the endocannabinoid system on prefrontal-dependent cognitive functioning. The present study might have significant implications for the underlying executive alterations described in some psychiatric disorders currently associated with endocannabinoids deregulation (namely drug abuse/dependence, depression, obesity and eating disorders). Understanding the neurobiology of their dysexecutive profile might certainly contribute to the development of new treatments and pharmacological approaches
    corecore