7 research outputs found

    Data from: Differentiation in neutral genes and a candidate gene in the pied flycatcher: Using biological archives to track global climate change

    Get PDF
    Global climate change is one of the major driving forces for adaptive shifts in migration and breeding phenology and possibly impacts demographic changes if a species fails to adapt sufficiently. In Western Europe, pied flycatchers (Ficedula hypoleuca) have insufficiently adapted their breeding phenology to the ongoing advance of food peaks within their breeding area and consequently suffered local population declines. We address the question whether this population decline led to a loss of genetic variation, using two neutral marker sets (mitochondrial control region and microsatellites), and one potentially selectively non-neutral marker (avian Clock gene). We report temporal changes in genetic diversity in extant populations and biological archives over more than a century, using samples from sites differing in the extent of climate change. Comparing genetic differentiation over this period revealed that only the recent Dutch population, which underwent population declines, showed slightly lower genetic variation than the historic Dutch population. As that loss of variation was only moderate and not observed in all markers, current gene flow across Western and Central European populations might have compensated local loss of variation over the last decades. A comparison of genetic differentiation in neutral loci versus the Clock gene locus provided evidence for stabilizing selection. Furthermore, in all genetic markers, we found a greater genetic differentiation in space than in time. This pattern suggests that local adaptation or historic processes might have a stronger effect on the population structure and genetic variation in the pied flycatcher than recent global climate changes. The data package contains four datasets: - Individual allele lengths of ten unlinked microsatellite loci (n= 311) - Individual allele lengths of the avian Clock-gene locus (n= 282) - Sequence alignment of control region sequences (271 bp) used for mtDNA analyses - Sequence alignment of Clock-gene sequences (235 bp) used for population genetic analyse

    Expression of subtilisin-like serine proteases in Arabidopsis thaliana is cell-specific and responds to jasmonic acid and heavy metals with developmental differences

    No full text
    Golldack D, Vera P, Dietz K-J. Expression of subtilisin-like serine proteases in Arabidopsis thaliana is cell-specific and responds to jasmonic acid and heavy metals with developmental differences. PHYSIOLOGIA PLANTARUM. 2003;118(1):64-73.The expression of two novel subtilisin-like serine proteases At-SLP2 and At-SLP3 from Arabidopsis thaliana and the recently identified Arabidopsis subtilase ARA12 was analysed with respect to plant development, stress response and cell specificity. In juvenile plants the mRNAs of the subtilisin-like proteases At-SLP2, At-SLP3 and ARA12 were detected with varying transcript levels in leaves but not in roots. In mature Arabidopsis plants transcripts were abundant in leaves, roots and flowers revealing developmental regulation of synthesis of subtilases. By in situ hybridization it was shown that the subtilisin-like proteases were predominantly present in epidermal cells and in the vascular bundles, in the phloem and in developing xylem elements. In flowers additional signals were localized, for example, in pistils, ovules and anthers. In flowers and juvenile developing leaves, expression of the subtilisin-like proteases increased following treatment with jasmonate and cadmium, respectively, suggesting that these proteases are responsive to stress and pathogen stimuli. The physiological relevance of these data in relation to plant morphogenesis and development is discussed

    Mutation of the matrix metalloproteinase At2-MMP inhibits growth and causes late flowering and early senescence in Arabidopsis

    No full text
    Golldack D, Popova OV, Dietz K-J. Mutation of the matrix metalloproteinase At2-MMP inhibits growth and causes late flowering and early senescence in Arabidopsis. JOURNAL OF BIOLOGICAL CHEMISTRY. 2002;277(7):5541-5547.This study characterizes the expression and functional significance of the member of the matrix metalloproteinase (MMP) family At2-MMP from Arabidopsis. By transcript analysis, expression of At2-MMP was found in leaves and roots of juvenile Arabidopsis and leaves, roots, and inflorescences of mature flowering plants showing strong increase of transcript abundance with aging. Cell specificity of expression of At2-MMP was studied by in situ hybridizations in leaves and flowers of Arabidopsis. In leaves, the gene was expressed in the phloem, in developing xylem elements, epidermal cells, and neighboring mesophyll cell layers. In flowers, Signals were localized in pistils, ovules, and receptacles. In an Arabidopsis mutant (at2-mmp-1) carrying a tDNA insertion in At2-MMP, neither germination nor development of plants was modified in comparison to the wild type in the juvenile rosette stage. Starting with the on-set of shoots, growth of roots, leaves, and shoots was inhibited compared with the wild type, and the plants were characterized by late flowering. Besides the flowering, at2-mmp-1 plants showed fast degradation of chlorophyll in leaves and early senescence. These results demonstrate the involvement of At2-MMP in plant growth, morphogenesis, and development with particular relevance for flowering and senescence

    Characterization of a HKT-type transporter in rice as a general alkali cation transporter

    No full text
    Golldack D, Su H, Quigley F, et al. Characterization of a HKT-type transporter in rice as a general alkali cation transporter. The Plant Journal. 2002;31(4):529-542.We report the characterization of rice OsHKT1 (Oryza sativa ssp. indica) homologous to the wheat K+/ Na+-symporter HKT1. Expression of OsHKT1 in the yeast strain CY162 defective in K+-uptake restored growth at mM and muM concentrations of K+ and mediated hypersensitivity to Na+. When expressed in Xenopus oocytes, rice OsHKT1 showed uptake characteristics of a Na+-transporter but mediated transport of other alkali cations as well. OsHKT1 expression was analysed in salt-tolerant rice Pokkali and salt-sensitive IR29 in response to external cation concentrations. OsHKT1 is expressed in roots and leaves. Exposure to Na+, Rb+, Li+, and Cs+ reduced OsHKT1 transcript amounts in both varieties and, in some cases, incompletely spliced transcripts were observed. By in situ hybridizations the expression of OsHKT1 was localized to the root epidermis and the vascular tissue inside the endodermis. In leaves, OsHKT1 showed strongest signals in cells surrounding the vasculature. The repression of OsHKT1 in the two rice varieties during salt stress was different in various cell types with main differences in the root vascular tissue. The data suggest control over HKT expression as a factor that may distinguish salt stress-sensitive and stress-tolerant lines. Differences in transcript expression in space and time in different lines of the same species appear to be a component of ion homeostasis correlated with salt sensitivity and tolerance
    corecore