198 research outputs found

    Quartz oscillators: deriving oscillation condition by symbolic calculus

    No full text
    International audienceThis paper presents the method used to derive the oscillation condition by using symbolic calculus. The program is based on the full nonlinear Barkhausen criterion method. The behaviour of an oscillator is described by a complex polynomial called the characteristic polynomial. This polynomial enables us to calculate the steady state features of the oscillation as well as the differential equation for transient analysis in the time domain. The literal determination of this characteristic polynomial involves lengthy algebraic calculations and cannot be done by hand as soon as the electronic oscillator circuit involves too many components. We recently developed a formal calculus program allowing to automatically obtain all necessary equations for oscillation analysis. We propose new methods to calculate them in an optimal form

    Automatic formal derivation of the oscillation condition

    No full text
    International audienceThe behavior of a quartz crystal oscillator can be described by a nonlinear characteristic polynomial whose coefficients are function of the circuit parameters. Solving the polynomial in the frequency domain leads to the steady state oscillation amplitude and frequency. In the time domain, it gives the oscillator signal transient. Deriving the characteristic polynomial from the circuit description involves lengthy and tedious algebraic calculations if they are performed by hand. They may be now performed by using the symbolic manipulation capabilities of commercially available softwares. However, symbolic analysis using brute force method inevitably leads to an explosion of terms in equations. The paper will present a fully automatic method for generating the coding of an oscillator characteristic polynomial directly from the SPICE description netlist. The code thus generated is eventually compiled and takes place in an oscillator library. Then it is linked with the numerical main program that solves the polynomials. Solutions to overcome problems related to automatic symbolic calculations are presented and discussed. It is shown that the method used leads to concise and efficient code

    Am and pm noise analysis in quartz crystal oscillators: symbolic calculus approach

    No full text
    International audienceIncreasing performance of quartz crystal oscillators as well as predictability requirements when developing the devices need accurate analysis of noise sources. Our work is devoted to understand how an oscillator reacts to additive noise of an element in the electronic circuit. Up to now, oscillator designers often refer to the well-known Leeson's model to explain the shape of phase noise spectral density. This physical model only allows one to obtain the global phase noise spectrum. By considering each noise source individually, we can obtain the comparative contribution of the sources. Then AM and PM noise source spectra can be related to the circuit architecture. The influence of an individual noise source can be obtained from the differential equation describing the oscillator behavior. Nevertheless, setup of the differential equation from the inspection of the circuit involves lengthy and tedious algebraic calculations almost impossible to achieve by hand. By using symbolic calculation capability of formal calculus programs, it is possible to automatically derive the differential equation of the oscillator including noise sources from a SPICE netlist description of the circuit. The resulting expressions can be edited under the form of high level language code (Fortran, C, ...) which is eventually compiled and linked with the numerical programs calculating the noise spectra. This paper presents the method to construct the differential equations in a fully automatic way regardless of the studied oscillator circuit

    Grouping levels of exposure with same observable effects before class prediction in toxicogenomics.

    Get PDF
    International audienceGene expression profiling in toxicogenomics is often used to find molecular signature of toxicants. The range of doses chosen in toxicogenomics studies does not always represent all the possible effects on gene expression: several doses of toxicant can lead to the same observable effect on the transcriptome. This makes the problem of dose exposure prediction difficult to address. We propose a strategy allowing to gather the doses with similar effects prior to the computing of a molecular signature. The different gathering of doses are compared with criteria based on likelihood or Monte Carlo Cross Validation. The molecular signature is then determined via a voting algorithm. Experimental results point out that the obtained classifier has better prediction performances than the classifier computed according to the original labeling

    The genetic architecture of language functional connectivity

    Get PDF
    Available online 18 December 2021Language is a unique trait of the human species, of which the genetic architecture remains largely unknown. Through language disorders studies, many candidate genes were identified. However, such complex and multi- factorial trait is unlikely to be driven by only few genes and case-control studies, suffering from a lack of power, struggle to uncover significant variants. In parallel, neuroimaging has significantly contributed to the under- standing of structural and functional aspects of language in the human brain and the recent availability of large scale cohorts like UK Biobank have made possible to study language via image-derived endophenotypes in the general population. Because of its strong relationship with task-based fMRI (tbfMRI) activations and its easiness of acquisition, resting-state functional MRI (rsfMRI) have been more popularised, making it a good surrogate of functional neuronal processes. Taking advantage of such a synergistic system by aggregating effects across spa- tially distributed traits, we performed a multivariate genome-wide association study (mvGWAS) between genetic variations and resting-state functional connectivity (FC) of classical brain language areas in the inferior frontal (pars opercularis, triangularis and orbitalis), temporal and inferior parietal lobes (angular and supramarginal gyri), in 32,186 participants from UK Biobank. Twenty genomic loci were found associated with language FCs, out of which three were replicated in an independent replication sample. A locus in 3p11.1, regulating EPHA3 gene expression, is found associated with FCs of the semantic component of the language network, while a lo- cus in 15q14, regulating THBS1 gene expression is found associated with FCs of the perceptual-motor language processing, bringing novel insights into the neurobiology of language.This research was conducted using the UK Biobank resource un- der application #64984. This project was supported by the Marie Sklodowska-Curie program awarded to Stephanie J. Forkel (Grant agree- ment No. 101028551). Amaia Carrion-Castillo was supported by a Juan de la Cierva fellowship from the Spanish Ministry of Science and Innova- tion, and a Gipuzkoa Fellows fellowship from the Basque Governmen

    Clustering-based Methods for Fast Epitome Generation

    Get PDF
    International audienceThis paper deals with epitome generation, mainly dedicated here to image coding applications. Existing approaches are known to be memory and time consuming due to exhaustive self-similarities search within the image for each non-overlapping block. We propose here a novel approach for epitome construction that first groups close patches together. In a second time the self-similarities search is performed for each group. By limiting the number of exhaustive searches we limit the memory occupation and the processing time. Results show that interesting complexity reduction can be achieved while keeping a good epitome quality (down to 18.08 % of the original memory occupation and 41.39 % of the original processing time)

    Learning Clustering-Based Linear Mappings for Quantization Noise Removal

    Get PDF
    International audienceThis paper describes a novel scheme to reduce the quantization noise of compressed videos and improve the overall coding performances. The proposed scheme first consists in clustering noisy patches of the compressed sequence. Then, at the encoder side, linear mappings are learned for each cluster between the noisy patches and the corresponding source patches. The linear mappings are then transmitted to the decoder where they can be applied to perform de-noising. The method has been tested with the HEVC standard, leading to a bitrate saving of up to 9.63%

    Inter-prediction methods based on linear embedding for video compression

    Get PDF
    International audienceThis paper considers the problem of temporal prediction for inter-frame coding of video sequences using locally linear embedding (LLE). LLE-based prediction, first considered for intra-frame prediction, computes the predictor as a linear combination of K nearest neighbors (K-NN) searched within one or several reference frames. The paper explores different K-NN search strategies in the context of temporal prediction, leading to several temporal predictor variants. The proposed methods are tested as extra inter-frame prediction modes in an H.264 codec, but the proposed concepts are still valid in HEVC. The results show that significant rate-distortion performance gains are obtained with respect to H.264 (up to 15.31% bit-rate saving)

    A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope

    Get PDF
    Globular clusters with their large populations of millisecond pulsars (MSPs) are believed to be potential emitters of high-energy gamma-ray emission. Our goal is to constrain the millisecond pulsar populations in globular clusters from analysis of gamma-ray observations. We use 546 days of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular clusters. Steady point-like high-energy gamma-ray emission has been significantly detected towards 8 globular clusters. Five of them (47 Tucanae, Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices (0.7<Γ<1.4)(0.7 < \Gamma <1.4) and clear evidence for an exponential cut-off in the range 1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral indices (1.0<Γ<1.7)(1.0 < \Gamma < 1.7), however the presence of an exponential cut-off can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC 6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral properties. From the observed gamma-ray luminosities, we estimate the total number of MSPs that is expected to be present in these globular clusters. We show that our estimates of the MSP population correlate with the stellar encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters, commensurate with previous estimates. The observation of high-energy gamma-ray emission from a globular cluster thus provides a reliable independent method to assess their millisecond pulsar populations that can be used to make constraints on the original neutron star X-ray binary population, essential for understanding the importance of binary systems in slowing the inevitable core collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J. Kn\"odlseder, N. Webb, B. Pancraz
    • …
    corecore