5 research outputs found

    Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique

    Full text link
    The fiber-matrix interfacial shear strength (IFSS) of biobased epoxy composites reinforced with basalt fiber was investigated by the fragmentation method. Basalt fibers were modified with four different silanes, (3-aminopropyl)trimethoxysilane, [3-(2-aminoethylamino)propyl]-trimethoxysilane, trimethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane and (3-glycidyloxypropyl)trimethoxysilane to improve the adhesion between the basalt fiber and the resin. The analysis of the fiber tensile strength results was performed in terms of statistical parameters. The tensile strength of silane-treated basalt fiber is higher than the tensile strength of the untreated basalt fiber; this behavior may be due to flaw healing effect on the defected fiber surfaces. The IFSS results on the composites confirm that the interaction between the fiber modified with coupling agents and the bio-based epoxy resin was much stronger than that with the untreated basalt fiber. POLYM. COMPOS., 36:1205-1212, 2015. (c) 2014 Society of Plastics EngineersContract grant sponsor: Programme Support Research and Development (Polytechnic University of Valencia); contract grant number: PAID-00-12.Samper Madrigal, MD.; Petrucci, R.; Sánchez Nacher, L.; Balart Gimeno, RA.; Kenny, JM. (2015). Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique. Polymer Composites. 36(7):1205-1212. https://doi.org/10.1002/pc.23023S12051212367Lopattananon, N., Kettle, A. P., Tripathi, D., Beck, A. J., Duval, E., France, R. M., … Jones, F. R. (1999). Interface molecular engineering of carbon-fiber composites. Composites Part A: Applied Science and Manufacturing, 30(1), 49-57. doi:10.1016/s1359-835x(98)00109-2Nishikawa, M., Okabe, T., & Takeda, N. (2008). Determination of interface properties from experiments on the fragmentation process in single-fiber composites. Materials Science and Engineering: A, 480(1-2), 549-557. doi:10.1016/j.msea.2007.07.067Rao, V., Herrera-franco, P., Ozzello, A. D., & Drzal, L. T. (1991). A Direct Comparison of the Fragmentation Test and the Microbond Pull-out Test for Determining the Interfacial Shear Strength. The Journal of Adhesion, 34(1-4), 65-77. doi:10.1080/00218469108026506Doan, T.-T.-L., Brodowsky, H., & Mäder, E. (2012). Jute fibre/epoxy composites: Surface properties and interfacial adhesion. Composites Science and Technology, 72(10), 1160-1166. doi:10.1016/j.compscitech.2012.03.025Koyanagi, J., Nakatani, H., & Ogihara, S. (2012). Comparison of glass–epoxy interface strengths examined by cruciform specimen and single-fiber pull-out tests under combined stress state. Composites Part A: Applied Science and Manufacturing, 43(11), 1819-1827. doi:10.1016/j.compositesa.2012.06.018Johnson, A. C., Hayes, S. A., & Jones, F. R. (2012). The role of matrix cracks and fibre/matrix debonding on the stress transfer between fibre and matrix in a single fibre fragmentation test. Composites Part A: Applied Science and Manufacturing, 43(1), 65-72. doi:10.1016/j.compositesa.2011.09.005Pupurs, A., Goutianos, S., Brondsted, P., & Varna, J. (2013). Interface debond crack growth in tension–tension cyclic loading of single fiber polymer composites. Composites Part A: Applied Science and Manufacturing, 44, 86-94. doi:10.1016/j.compositesa.2012.08.019TRIPATHI, D., & JONES, F. R. (1998). Journal of Materials Science, 33(1), 1-16. doi:10.1023/a:1004351606897Awal, A., Cescutti, G., Ghosh, S. B., & Müssig, J. (2011). Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Composites Part A: Applied Science and Manufacturing, 42(1), 50-56. doi:10.1016/j.compositesa.2010.10.007Kelly, A., & Tyson, W. R. (1965). Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. Journal of the Mechanics and Physics of Solids, 13(6), 329-350. doi:10.1016/0022-5096(65)90035-9Altuna, F. I., Espósito, L. H., Ruseckaite, R. A., & Stefani, P. M. (2010). Thermal and mechanical properties of anhydride-cured epoxy resins with different contents of biobased epoxidized soybean oil. Journal of Applied Polymer Science, 120(2), 789-798. doi:10.1002/app.33097Harry-O’kuru, R. E., Mohamed, A., Gordon, S. H., & Xu, J. (2012). Syntheses of Novel Protein Products (Milkglyde, Saliglyde, and Soyglyde) from Vegetable Epoxy Oils and Gliadin. Journal of Agricultural and Food Chemistry, 60(7), 1688-1694. doi:10.1021/jf204701tPan, X., Sengupta, P., & Webster, D. C. (2011). High Biobased Content Epoxy–Anhydride Thermosets from Epoxidized Sucrose Esters of Fatty Acids. Biomacromolecules, 12(6), 2416-2428. doi:10.1021/bm200549cStemmelen, M., Pessel, F., Lapinte, V., Caillol, S., Habas, J.-P., & Robin, J.-J. (2011). A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. Journal of Polymer Science Part A: Polymer Chemistry, 49(11), 2434-2444. doi:10.1002/pola.24674Kim, H. (2012). Thermal characteristics of basalt fiber reinforced epoxy-benzoxazine composites. Fibers and Polymers, 13(6), 762-768. doi:10.1007/s12221-012-0762-zWang, H., Wang, G., Zhang, L., Jiang, Z., Guan, S., & Zhang, S. (2012). Influence of the addition of lubricant on the properties of poly(ether ether ketone)/basalt fiber composites. High Performance Polymers, 24(6), 503-506. doi:10.1177/0954008312443845Tehrani Dehkordi, M., Nosraty, H., Shokrieh, M. M., Minak, G., & Ghelli, D. (2013). The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites. Materials & Design, 43, 283-290. doi:10.1016/j.matdes.2012.07.005Guillebaud-Bonnafous, C., Vasconcellos, D., Touchard, F., & Chocinski-Arnault, L. (2012). Experimental and numerical investigation of the interface between epoxy matrix and hemp yarn. Composites Part A: Applied Science and Manufacturing, 43(11), 2046-2058. doi:10.1016/j.compositesa.2012.07.015Pickering, K. L., Sawpan, M. A., Jayaraman, J., & Fernyhough, A. (2011). Influence of loading rate, alkali fibre treatment and crystallinity on fracture toughness of random short hemp fibre reinforced polylactide bio-composites. Composites Part A: Applied Science and Manufacturing, 42(9), 1148-1156. doi:10.1016/j.compositesa.2011.04.020Charlet, K., Jernot, J.-P., Gomina, M., Bizet, L., & Bréard, J. (2010). Mechanical Properties of Flax Fibers and of the Derived Unidirectional Composites. Journal of Composite Materials, 44(24), 2887-2896. doi:10.1177/0021998310369579Barreto, A. C. H., Esmeraldo, M. A., Rosa, D. S., Fechine, P. B. A., & Mazzetto, S. E. (2010). Cardanol biocomposites reinforced with jute fiber: Microstructure, biodegradability, and mechanical properties. Polymer Composites, 31(11), 1928-1937. doi:10.1002/pc.20990Bledzki, A. K., & Jaszkiewicz, A. (2010). Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres – A comparative study to PP. Composites Science and Technology, 70(12), 1687-1696. doi:10.1016/j.compscitech.2010.06.005Terenzi, A., Kenny, J. M., & Barbosa, S. E. (2006). Natural fiber suspensions in thermoplastic polymers. I. Analysis of fiber damage during processing. Journal of Applied Polymer Science, 103(4), 2501-2506. doi:10.1002/app.24704Herrera-Franco, P. J., & Drzal, L. T. (1992). Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites, 23(1), 2-27. doi:10.1016/0010-4361(92)90282-yPark, J.-M., Shin, W.-G., & Yoon, D.-J. (1999). A study of interfacial aspects of epoxy-based composites reinforced with dual basalt and SiC fibres by means of the fragmentation and acoustic emission techniques. Composites Science and Technology, 59(3), 355-370. doi:10.1016/s0266-3538(98)00085-2España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421Holmes, G. A., Feresenbet, E., & Raghavan, D. (2003). Using self-assembled monolayer technology to probe the mechanical response of the fiber interphase-matrix interphase interface. Composite Interfaces, 10(6), 515-546. doi:10.1163/15685540332266725
    corecore