129 research outputs found
Global sensitivity analysis in life-cycle assessment of early-stage technology using detailed process simulation: application to dialkylimidazolium ionic liquid production.
The ability to assess the environmental performance of early-stage technologies at production scale is critical for sustainable process development. This paper presents a systematic methodology for uncertainty quantification in life-cycle assessment (LCA) of such technologies using global sensitivity analysis (GSA) coupled with a detailed process simulator and LCA database. This methodology accounts for uncertainty in both the background and foreground life-cycle inventories, and is enabled by lumping multiple background flows, either downstream or upstream of the foreground processes, in order to reduce the number of factors in the sensitivity analysis. A case study comparing the life-cycle impacts of two dialkylimidazolium ionic liquids is conducted to illustrate the methodology. Failure to account for the foreground process uncertainty alongside the background uncertainty is shown to underestimate the predicted variance of the end-point environmental impacts by a factor of two. Variance-based GSA furthermore reveals that only few foreground and background uncertain parameters contribute significantly to the total variance in the end-point environmental impacts. As well as emphasizing the need to account for foreground uncertainties in LCA of early-stage technologies, these results illustrate how GSA can empower more reliable decision-making in LCA
Role of life-cycle externalities in the valuation of protic ionic liquids – a case study in biomass pretreatment solvents
Ionic liquids have found their way into many applications where they show a high potential to replace traditional chemicals. But there are concerns over their ecological impacts (toxicity and biodegradability) and high cost, which have limited their use so far. The outcome of existing techno-economic and life-cycle assessments comparing ionic liquids with existing solvents has proven hard to interpret due to the many metrics used and trade-offs between them. For the first time, this paper couples the concept of monetization with detailed process simulation and life-cycle assessment to estimate the true cost of ionic liquids. A comparative case study on four solvents used in lignocellulosic biomass pretreatment is conducted: triethylammonium hydrogen sulfate [TEA][HSO4], 1-methylimidazolium hydrogen sulfate [HMIM][HSO4], acetone from fossil sources, and glycerol from renewable sources. The results show that the total monetized cost of production accounting for externalities can be more than double the direct costs estimated using conventional economic assessment methods. The ionic liquid [TEA][HSO4] is found to have the lowest total cost, while the renewable solvent glycerol presents the highest total cost. We expect this methodology to provide a starting point for future research and development in sustainable ionic liquid
Multi-objective optimization of environmentally conscious chemical supply chains under demand uncertainty
In this work, we analyze the effect of demand uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear program (MILP) with the unique feature of incorporating explicitly the demand uncertainty using scenarios with given probability of occurrence. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact.The authors wish to acknowledge support from the Spanish Ministry of Education and Science (ENE2011-28269-C03-03, ENE2011-22722, DPI2012-37154-C02-02, CTQ2009-14420-C02, CTQ2012-37039-C02) and Programa DRAC de la Xarxa Vives d’Universitats
Time for global action: an optimised cooperative approach towards effective climate change mitigation
The difficulties in climate change negotiations together with the recent withdrawal of the U.S. from the Paris Agreement call for new cooperative mechanisms to enable a resilient international response. In this study we propose an approach to aid such negotiations based on quantifying the benefits of interregional cooperation and distributing them among the participants in a fair manner. Our approach is underpinned by advanced optimisation techniques that automate the screening of millions of alternatives for differing levels of cooperation, ultimately identifying the most cost-effective solutions for meeting emission targets. We apply this approach to the Clean Power Plan, a related act in the U.S. aiming at curbing carbon emissions from electricity generation, but also being withdrawn. We find that, with only half of the states cooperating, the cost of electricity generation could be reduced by US$41 billion per year, while simultaneously cutting carbon emissions by 68% below 2012 levels. These win–win scenarios are attained by sharing the emission targets and trading electricity among the states, which allows exploiting regional advantages. Fair sharing of dividends may be used as a key driver to spur cooperation since the global action to mitigate climate change becomes beneficial for all participants. Even if global cooperation remains elusive, it is worth trying since the mere cooperation of a few states leads to significant benefits for both the U.S. economy and the climate. These findings call on the U.S. to reconsider its withdrawal but also boost individual states to take initiative even in the absence of federal action
Assessment of Lagrangean decomposition for short-term planning of integrated refinery-petrochemical operations
We present an integrated methodology for optimal short-term planning of integrated refinery-petrochemical complexes (IRPCs) and demonstrate it on a full-scale industrial case study under four realistic planning scenarios. The large-scale mixed-integer quadratically constrained optimization models are amenable to a spatial Lagrangean decomposition through dividing the IRPC into multiple subsections, which comprise crude management, refinery, fuel blending, and petrochemical production. The decomposition algorithm creates virtual markets for trading crude blends and intermediate petrochemical streams within the IRPC and seeks an optimal tradeoff in such markets, with the Lagrange multipliers acting as transfer prices. The best results are obtained for decompositions with two or three subsections, achieving optimality gaps below 4% in all four planning scenarios. The Lagrangean decomposition provides tighter primal and dual bounds than the global solvers BARON and ANTIGONE, and it also improves the dual bounds computed using piecewise linear relaxation strategies
Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models
<p>Abstract</p> <p>Background</p> <p>Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization.</p> <p>Results</p> <p>Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity.</p> <p>Conclusions</p> <p>Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.</p
Region-Specific Sourcing of Lignocellulose Residues as Renewable Feedstocks for a Net-Zero Chemical Industry
Biobased chemicals, crucial for the net-zero chemical industry, rely on lignocellulose residues as a major feedstock. However, its availability and environmental impacts vary greatly across regions. By 2050, we estimate that 3.0-5.2 Gt of these residues will be available from the global forest and agricultural sectors, with key contributions from Brazil, China, India, and the United States. This supply satisfies the growing global feedstock demands for plastics when used efficiently. Forest residues have 84% lower climate change impacts than agricultural residues on average globally but double the land-use-related biodiversity loss. Biobased plastics may reduce climate change impacts relative to fossil-based alternatives but are insufficient to fulfill net-zero targets. In addition, they pose greater challenges in terms of biodiversity loss and water stress. Avoiding feedstock sourcing from biodiversity-rich areas could halve lignocellulose residues-related biodiversity loss without significantly compromising availability. Improvements in region-specific feedstock sourcing, agricultural management and biomass utilization technologies are warranted for transitioning toward a sustainable chemical industry
- …