662 research outputs found

    Electrical Properties of Single Crystals of Tungstenite (WS2)

    Get PDF

    The Dominance of Metal-Rich Streams in Stellar Halos: A Comparison Between Substructure in M31 and Lambda-CDM Models

    Get PDF
    Extensive photometric and spectroscopic surveys of the Andromeda galaxy (M31) have discovered tidal debris features throughout M31's stellar halo. We present stellar kinematics and metallicities in fields with identified substructure from our on-going SPLASH survey of M31 red giant branch stars with the DEIMOS spectrograph on the Keck II 10-m telescope. Radial velocity criteria are used to isolate members of the kinematically-cold substructures. The substructures are shown to be metal-rich relative to the rest of the dynamically hot stellar population in the fields in which they are found. We calculate the mean metallicity and average surface brightness of the various kinematical components in each field, and show that, on average, higher surface brightness features tend to be more metal-rich than lower surface brightness features. Simulations of stellar halo formation via accretion in a cosmological context are used to illustrate that the observed trend can be explained as a natural consequence of the observed dwarf galaxy mass-metallicity relation. A significant spread in metallicity at a given surface brightness is seen in the data; we show that this is due to time effects, namely the variation in the time since accretion of the tidal streams' progenitor onto the host halo. We show that in this theoretical framework a relationship between the alpha-enhancement and surface brightness of tidal streams is expected, which arises from the varying times of accretion of the progenitor satellites onto the host halo. Thus, measurements of the alpha-enrichment, metallicity, and surface brightness of tidal debris can be used to reconstruct the luminosity and time of accretion onto the host halo of the progenitors of tidal streams.Comment: 11 pages, 6 figures, published in Ap

    Magnitude bias of microlensed sources towards the Large Magellanic Cloud

    Get PDF
    There are lines of evidence suggesting that some of the observed microlensing events in the direction of the Large Magellanic Cloud (LMC) are caused by ordinary star lenses as opposed to dark Machos in the Galactic halo. Efficient lensing by ordinary stars generally requires the presence of one or more additional concentrations of stars along the line of sight to the LMC disk. If such a population behind the LMC disk exists, then the source stars (for lensing by LMC disk objects) will be drawn preferentially from the background population and will show systematic differences from LMC field stars. One such difference is that the (lensed) source stars will be farther away than the average LMC field stars, and this should be reflected in their apparent baseline magnitudes. We focus on red clump stars: these should appear in the color-magnitude diagram at a few tenths of a magnitude fainter than the field red clump. Suggestively, one of the two near-clump confirmed events, MACHO-LMC-1, is a few tenths of magnitude fainter than the clump.Comment: To appear in ApJ Letters. Shortened to match the accepted version, 8 pages plus 1 ps figur

    The non-specific lethal (NSL) complex at the crossroads of transcriptional control and cellular homeostasis

    No full text
    The functionality of chromatin is tightly regulated by post-translational modifications that modulate transcriptional output from target loci. Among the post-translational modifications of chromatin, reversible ε-lysine acetylation of histone proteins is prominent at transcriptionally active genes. Lysine acetylation is catalyzed by lysine acetyltransferases (KATs), which utilize the central cellular metabolite acetyl-CoA as their substrate. Among the KATs that mediate lysine acetylation, males absent on the first (MOF/KAT8) is particularly notable for its ability to acetylate histone 4 lysine 16 (H4K16ac), a modification that decompacts chromatin structure. MOF and its non-specific lethal (NSL) complex members have been shown to localize to gene promoters and enhancers in the nucleus, as well as to microtubules and mitochondria to regulate key cellular processes. Highlighting their importance, mutations or deregulation of NSL complex members has been reported in both human neurodevelopmental disorders and cancer. Based on insight gained from studies in human, mouse, and Drosophila model systems, this review discusses the role of NSL-mediated lysine acetylation in a myriad of cellular functions in both health and disease. Through these studies, the importance of the NSL complex in regulating core transcriptional and signaling networks required for normal development and cellular homeostasis is beginning to emerge

    Sensitivity of solar off-limb line profiles to electron density stratification and the velocity distribution anisotropy

    Full text link
    The effect of the electron density stratification on the intensity profiles of the H I Ly-α\alpha line and the O VI and Mg X doublets formed in solar coronal holes is investigated. We employ an analytical 2-D model of the large scale coronal magnetic field that provides a good representation of the corona at the minimum of solar activity. We use the mass-flux conservation equation to determine the outflow speed of the solar wind at any location in the solar corona and take into account the integration along the line of sight (LOS). The main assumption we make is that no anisotropy in the kinetic temperature of the coronal species is considered. We find that at distances greater than 1 Rsun from the solar surface the widths of the emitted lines of O VI and Mg X are sensitive to the details of the adopted electron density stratification. However, Ly-α\alpha, which is a pure radiative line, is hardly affected. The calculated total intensities of Ly-α\alpha and the O VI doublet depend to a lesser degree on the density stratification and are comparable to the observed ones for most of the considered density models. The widths of the observed profiles of Ly-α\alpha and Mg X are well reproduced by most of the considered electron density stratifications, while for the O VI doublet only few stratifications give satisfying results. The densities deduced from SOHO data result in O VI profiles whose widths and intensity ratio are relatively close to the values observed by UVCS although only isotropic velocity distributions are employed. These density profiles also reproduce the other considered observables with good accuracy. Thus the need for a strong anisotropy of the velocity distribution (i.e. a temperature anisotropy) is not so clear cut as previous investigations of UVCS data suggested. ...Comment: 11 pages; 11 figure

    The Extended Star Formation History of the Andromeda Spheroid at 35 Kpc on the Minor Axis

    Get PDF
    Using the HST ACS, we have obtained deep optical images reaching well below the oldest main sequence turnoff in fields on the southeast minor-axis of the Andromeda Galaxy, 35 kpc from the nucleus. These data probe the star formation history in the extended halo of Andromeda -- that region beyond 30 kpc that appears both chemically and morphologically distinct from the metal-rich, highly-disturbed inner spheroid. The present data, together with our previous data for fields at 11 and 21 kpc, do not show a simple trend toward older ages and lower metallicities, as one might expect for populations further removed from the obvious disturbances of the inner spheroid. Specifically, the mean ages and [Fe/H] values at 11 kpc, 21 kpc, and 35 kpc are 9.7 Gyr and -0.65, 11.0 Gyr and -0.87, and 10.5 Gyr and -0.98, respectively. In the best-fit model of the 35 kpc population, one third of the stars are younger than 10 Gyr, while only ~10% of the stars are truly ancient and metal-poor. The extended halo thus exhibits clear evidence of its hierarchical assembly, and the contribution from any classical halo formed via early monolithic collapse must be small.Comment: Accepted for publication in The Astrophysical Journal Letters. 4 pages, latex, 2 color figure

    The DEEP2 Galaxy Redshift Survey: Redshift Identification of Single-Line Emission Galaxies

    Get PDF
    We present two methods for determining spectroscopic redshifts of galaxies in the DEEP2 survey which display only one identifiable feature, an emission line, in the observed spectrum ("single-line galaxies"). First, we assume each single line is one of the four brightest lines accessible to DEEP2: Halpha, [OIII] 5007, Hbeta, or [OII] 3727. Then, we supplement spectral information with BRI photometry. The first method, parameter space proximity (PSP), calculates the distance of a single-line galaxy to galaxies of known redshift in (B-R), (R-I), R, observed wavelength parameter space. The second method is an artificial neural network (ANN). Prior information, such as allowable line widths and ratios, rules out one or more of the four lines for some galaxies in both methods. Based on analyses of evaluation sets, both methods are nearly perfect at identifying blended [OII] doublets. Of the lines identified as Halpha in the PSP and ANN methods, 91.4% and 94.2% respectively are accurate. Although the methods are not this accurate at discriminating between [OIII] and Hbeta, they can identify a single line as one of the two, and the ANN method in particular unambiguously identifies many [OIII] lines. From a sample of 640 single-line spectra, the methods determine the identities of 401 (62.7%) and 472 (73.8%) single lines, respectively, at accuracies similar to those found in the evaluation sets.Comment: 11 pages, 6 figures, accepted to Ap

    No evidence for feedback: Unexceptional Low-ionization winds in Host galaxies of Low Luminosity Active Galactic Nuclei at Redshift z ~1

    Full text link
    We study winds in 12 X-ray AGN host galaxies at z ~ 1. We find, using the low-ionization Fe II 2586 absorption in the stacked spectra, that the probability distribution function (PDF) of the centroid velocity shift in AGN has a median, 16th and 84th percentiles of (-87, -251, +86) km/s respectively. The PDF of the velocity dispersion in AGN has a median, 84th and 16th percentile of (139, 253, 52) km/s respectively. The centroid velocity and the velocity dispersions are obtained from a two component (ISM+wind) absorption line model. The equivalent width PDF of the outflow in AGN has median, 84th and 16th percentiles of (0.4, 0.8, 0.1) Angstrom. There is a strong ISM component in Fe II 2586 absorption with (1.2, 1.5, 0.8) Angstrom, implying presence of substantial amount cold gas in the host galaxies. For comparison, star-forming and X-ray undetected galaxies at a similar redshift, matched roughly in stellar mass and galaxy inclination, have a centroid velocity PDF with percentiles of (-74, -258, +90) km/s, and a velocity dispersion PDF percentiles of (150, 259, 57) km/s. Thus, winds in the AGN are similar to star-formation-driven winds, and are too weak to escape and expel substantial cool gas from galaxies. Our sample doubles the previous sample of AGN studied at z ~ 0.5 and extends the analysis to z ~ 1. A joint reanalysis of the z ~ 0.5 AGN sample and our sample yields consistent results to the measurements above.Comment: 24 pages, 11 figures, accepted in Ap

    Evolution in the Dust Lane Fraction of Edge-on L* Spiral Galaxies since z=0.8

    Get PDF
    The presence of a well-defined and narrow dust lane in an edge-on spiral galaxy is the observational signature of a thin and dense molecular disk, in which gravitational collapse has overcome turbulence. Using a sample of galaxies out to z~1 extracted from the COSMOS survey, we identify the fraction of massive disks that display a dust lane. Our goal is to explore the evolution in the stability of the molecular ISM disks in spiral galaxies over a cosmic timescale. We check the reliability of our morphological classifications against changes in restframe wavelength, resolution, and cosmic dimming with (artificially redshifted) images of local galaxies from SDSS. We find that the fraction of L* disks with dust lanes in COSMOS is consistent with the local fraction (~80%) out to z~0.7. At z=0.8, the dust lane fraction is only slightly lower. A somewhat lower dust lane fraction in starbursting galaxies tentatively supports the notion that a high specific star formation rate can efficiently destroy or inhibit a dense molecular disk. A small subsample of higher redshift COSMOS galaxies display low internal reddening (E[B-V]), as well as a low incidence of dust lanes. These may be disks in which the growth of the dusty ISM disk lags behind that of the stellar disk. We note that at z=0.8, the most massive galaxies display a lower dust lane fraction than lower mass galaxies. A small contribution of recent mergers or starbursts to this most massive population may be responsible. The fact that the fraction of galaxies with dust lanes in COSMOS is consistent with little or no evolution implies that models to explain the Spectral Energy Distribution or the host galaxy dust extinction of supernovae based on local galaxies are still applicable to higher redshift spirals. It also suggests that dust lanes are long lived phenomena or can be reformed over very short time-scales.Comment: 14 pages, 9 figures, 2 tables, accepted for publication by Ap
    corecore