1,185 research outputs found

    The runaway black hole GRO J1655-40

    Get PDF
    We have used the Hubble Space Telescope to measure the motion in the sky and compute the galactocentric orbit of the black hole X-ray binary GRO J1655-40. The system moves with a runaway space velocity of 112±18112\pm 18 km s1^{-1} in a highly eccentric (e=0.34±0.05e = 0.34\pm 0.05) orbit. The black hole was formed in the disk at a distance greater than 3 kpc from the Galactic centre and must have been shot to such an eccentric orbit by the explosion of the progenitor star. The runaway linear momentum and kinetic energy of this black hole binary are comparable to those of solitary neutron stars and millisecond pulsars. GRO J1655-40 is the first black hole for which there is evidence for a runaway motion imparted by a natal kick in a supernova explosion.Comment: Published in Astronomy and Astrophysics. 5 pages, 2 color figures. Color figure and animation can be found at http://www.iafe.uba.ar/astronomia/mirabel/mirabel.html or ftp://ftp.cea.fr/incoming/y2k01/mirabe

    First Measurement of the He3+He3-->He4+2p Cross Section down to the Lower Edge of the Solar Gamow Peak

    Full text link
    We give the LUNA results on the cross section measurement of a key reaction of the proton-proton chain strongly affecting the calculated neutrino luminosity from the Sun: He3+He3-->He4+2p. Due to the cosmic ray suppression provided by the Gran Sasso underground laboratory it has been possible to measure the cross section down to the lower edge of the solar Gamow peak, i.e. as low as 16.5 keV centre of mass energy. The data clearly show the cross section increase due to the electron screening effect but they do not exhibit any evidence for a narrow resonance suggested to explain the observed solar neutrino flux.Comment: 5 pages, RevTeX, and 2 figures in PostScript Submitted for publicatio

    Migraine and cluster headache show impaired neurosteroids patterns

    Get PDF
    Background: Perturbation of neuronal excitability contributes to migraine. Neurosteroids modulate the activity of γ-aminobutyric acid A and N-methyl-d-aspartate receptors, and might be involved in the pathogenesis of migraine. Here, we measured plasma levels of four neurosteroids, i.e., allopregnanolone, epiallopregnanolone, dehydroepiandrosterone and deydroepiandrosterone sulfate, in patients affected by episodic migraine, chronic migraine, or cluster headache. Methods: Nineteen female patients affected by episodic migraine, 51 female patients affected by chronic migraine, and 18 male patients affected by cluster headache were recruited to the study. Sex- and age-matched healthy control subjects (31 females and 16 males) were also recruited. Patients were clinically characterized by using validated questionnaires. Plasma neurosteroid levels were measured by liquid chromatography-tandem mass spectrometry. Results: We found disease-specific changes in neurosteroid levels in our study groups. For example, allopregnanolone levels were significantly increased in episodic migraine and chronic migraine patients than in control subjects, whereas they were reduced in patients affected by cluster headache. Dehydroepiandrosterone and dehydroepiandrosterone sulfate levels were reduced in patients affected by chronic migraine, but did not change in patients affected by cluster headache. Conclusion: We have shown for the first time that large and disease-specific changes in circulating neurosteroid levels are associated with chronic headache disorders, raising the interesting possibility that fluctuations of neurosteroids at their site of action might shape the natural course of migraine and cluster headache. Whether the observed changes in neurosteroids are genetically determined or rather result from exposure to environmental or intrinsic stressors is unknown. This might also be matter for further investigation because stress is a known triggering factor for headache attacks in both migraineurs and cluster headache patients

    Neutron-induced background by an alpha-beam incident on a deuterium gas target and its implications for the study of the 2H(alpha,gamma)6Li reaction at LUNA

    Full text link
    The production of the stable isotope Li-6 in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological Li-6 plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of Li-7 abundances and would point to a predominantly primordial origin of Li-6, contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang Li-6 production must be revisited. The main production channel for Li-6 in the Big Bang is the 2H(alpha,gamma)6Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an {\alpha}-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the 2H(d,n)3He reaction. Due to the ultra-low laboratory neutron background at LUNA, the effect of this weak flux of 2-3 MeV neutrons on well-shielded high-purity germanium detectors has been studied in detail. Data have been taken at 280 and 400 keV alpha-beam energy and for comparison also using an americium-beryllium neutron source.Comment: Submitted to EPJA; 13 pages, 8 figure

    First Direct Measurement of the ^{17}O(p,\gamma)^{18}F Reaction Cross-Section at Gamow Energies for Classical Novae

    Full text link
    Classical novae are important contributors to the abundances of key isotopes, such as the radioactive ^{18}F, whose observation by satellite missions could provide constraints on nucleosynthesis models in novae. The ^{17}O(p,\gamma)^{18}F reaction plays a critical role in the synthesis of both oxygen and fluorine isotopes but its reaction rate is not well determined because of the lack of experimental data at energies relevant to novae explosions. In this study, the reaction cross section has been measured directly for the first time in a wide energy range Ecm = 200 - 370 keV appropriate to hydrogen burning in classical novae. In addition, the E=183 keV resonance strength, \omega \gamma=1.67\pm0.12 \mueV, has been measured with the highest precision to date. The uncertainty on the ^{17}O(p,\gamma)^{18}F reaction rate has been reduced by a factor of 4, thus leading to firmer constraints on accurate models of novae nucleosynthesis.Comment: accepted by Phys. Rev. Let

    Measurement of 25Mg(p; gamma)26Al resonance strengths via gamma spectrometry

    Full text link
    The COMPTEL instrument performed the first mapping of the 1.809 MeV photons in the Galaxy, triggering considerable interest in determing the sources of interstellar 26Al. The predicted 26Al is too low compared to the observation, for a better understanding more accurate rates for the 25Mg(p; gamma)26Al reaction are required. The 25Mg(p;gamma)26Al reaction has been investigated at the resonances at Er= 745; 418; 374; 304 keV at Ruhr-Universitat-Bochum using a Tandem accelerator and a 4piNaI detector. In addition the resonance at Er = 189 keV has been measured deep underground laboratory at Laboratori Nazionali del Gran Sasso, exploiting the strong suppression of cosmic background. This low resonance has been studied with the 400 kV LUNA accelerator and a HPGe detector. The preliminary results of the resonance strengths will be reported.Comment: Accepted for publication in Journal of Physics

    The 3He(alpha,gamma)7Be S-factor at solar energies: the prompt gamma experiment at LUNA

    Full text link
    The 3He(alpha,gamma)7Be process is a key reaction in both Big-Bang nucleosynthesis and p-p chain of Hydrogen Burning in Stars. A new measurement of the 3He(alpha,gamma)7Be cross section has been performed at the INFN Gran Sasso underground laboratory by both the activation and the prompt gamma detection methods. The present work reports full details of the prompt gamma detection experiment, focusing on the determination of the systematic uncertainty. The final data, including activation measurements at LUNA, are compared with the results of the last generation experiments and two different theoretical models are used to obtain the S-factor at solar energies.Comment: Accepted for publication in Nucl. Phys.

    Ultra-sensitive in-beam gamma-ray spectroscopy for nuclear astrophysics at LUNA

    Full text link
    Ultra-sensitive in-beam gamma-ray spectroscopy studies for nuclear astrophysics are performed at the LUNA (Laboratory for Underground Nuclear Astrophysics) 400 kV accelerator, deep underground in Italy's Gran Sasso laboratory. By virtue of a specially constructed passive shield, the laboratory gamma-ray background for E_\gamma < 3 MeV at LUNA has been reduced to levels comparable to those experienced in dedicated offline underground gamma-counting setups. The gamma-ray background induced by an incident alpha-beam has been studied. The data are used to evaluate the feasibility of sensitive in-beam experiments at LUNA and, by extension, at similar proposed facilities.Comment: accepted, Eur. Phys. J.

    Preparation and characterisation of isotopically enriched Ta2_2O5_5 targets for nuclear astrophysics studies

    Full text link
    The direct measurement of reaction cross sections at astrophysical energies often requires the use of solid targets of known thickness, isotopic composition, and stoichiometry that are able to withstand high beam currents for extended periods of time. Here, we report on the production and characterisation of isotopically enriched Ta2_2O5_5 targets for the study of proton-induced reactions at the Laboratory for Underground Nuclear Astrophysics facility of the Laboratori Nazionali del Gran Sasso. The targets were prepared by anodisation of tantalum backings in enriched water (up to 66% in 17^{17}O and up to 96% in 18^{18}O). Special care was devoted to minimising the presence of any contaminants that could induce unwanted background reactions with the beam in the energy region of astrophysical interest. Results from target characterisation measurements are reported, and the conclusions for proton capture measurements with these targets are drawn.Comment: accepted to EPJ
    corecore