624 research outputs found

    Inhibition of Expression in Escherichia coli of a Virulence Regulator MglB of Francisella tularensis Using External Guide Sequence Technology

    Get PDF
    External guide sequences (EGSs) have successfully been used to inhibit expression of target genes at the post-transcriptional level in both prokaryotes and eukaryotes. We previously reported that EGS accessible and cleavable sites in the target RNAs can rapidly be identified by screening random EGS (rEGS) libraries. Here the method of screening rEGS libraries and a partial RNase T1 digestion assay were used to identify sites accessible to EGSs in the mRNA of a global virulence regulator MglB from Francisella tularensis, a Gram-negative pathogenic bacterium. Specific EGSs were subsequently designed and their activities in terms of the cleavage of mglB mRNA by RNase P were tested in vitro and in vivo. EGS73, EGS148, and EGS155 in both stem and M1 EGS constructs induced mglB mRNA cleavage in vitro. Expression of stem EGS73 and EGS155 in Escherichia coli resulted in significant reduction of the mglB mRNA level coded for the F. tularensis mglB gene inserted in those cells

    Catalytic RNase P RNA from Synechocystis sp. cleaves the hepatitis C virus RNA near the AUG start codon

    Get PDF
    AbstractPreviously, we described two RNA structural motifs in the hepatitis C viral (HCV) genome that can be processed in vitro by human ribonuclease P (RNase P) enzyme [J. Biol. Chem. 277 (2002) 30606]. One of these structures is located in the internal ribosome entry site and is conserved in the related animal pestiviruses [J. Biol. Chem. 278 (2003) 26844]. Here, we tested two prokaryotic RNase P ribozymes (P RNA) against this conserved structural motif. In vitro experiments indicated that P RNA from Synechocystis sp. can specifically process the viral transcript preparations in a position close to the human RNase P cleavage site. This provides additional support for the presence of an RNA structure similar to tRNA near the AUG start codon and suggests that Synechocystis P RNA may be an active agent for HCV antigenomic interventions

    MINAS—a database of Metal Ions in Nucleic AcidS

    Get PDF
    Correctly folded into the respective native 3D structure, RNA and DNA are responsible for uncountable key functions in any viable organism. In order to exert their function, metal ion cofactors are closely involved in folding, structure formation and, e.g. in ribozymes, also the catalytic mechanism. The database MINAS, Metal Ions in Nucleic AcidS (http://www.minas.uzh.ch), compiles the detailed information on innersphere, outersphere and larger coordination environment of >70 000 metal ions of 36 elements found in >2000 structures of nucleic acids contained today in the PDB and NDB. MINAS is updated monthly with new structures and offers a multitude of search functions, e.g. the kind of metal ion, metal-ligand distance, innersphere and outersphere ligands defined by element or functional group, residue, experimental method, as well as PDB entry-related information. The results of each search can be saved individually for later use with so-called miniPDB files containing the respective metal ion together with the coordination environment within a 15 Å radius. MINAS thus offers a unique way to explore the coordination geometries and ligands of metal ions together with the respective binding pockets in nucleic acids

    Mechanical unfolding of RNA: From hairpins to structures with internal multiloops

    Get PDF
    Mechanical unfolding of RNA structures, ranging from hairpins to ribozymes, using laser optical tweezer (LOT) experiments have begun to reveal the features of the energy landscape that cannot be easily explored using conventional experiments. Upon application of constant force (ff), RNA hairpins undergo cooperative transitions from folded to unfolded states whereas subdomains of ribozymes unravel one at a time. Here, we use a self-organized polymer (SOP) model and Brownian dynamics simulations to probe mechanical unfolding at constant force and constant-loading rate of four RNA structures of varying complexity. Our work shows (i) the response of RNA to force is largely determined by the native structure; (ii) only by probing mechanical unfolding over a wide range of forces can the underlying energy landscape be fully explored.Comment: 26 pages, 6 figures, Biophys. J. (in press

    Yeast mitochondrial RNase P, RNase Z and the RNA degradosome are part of a stable supercomplex

    Get PDF
    Initial steps in the synthesis of functional tRNAs require 5′- and 3′-processing of precursor tRNAs (pre-tRNAs), which in yeast mitochondria are achieved by two endonucleases, RNase P and RNase Z. In this study, using a combination of detergent-free Blue Native Gel Electrophoresis, proteomics and in vitro testing of pre-tRNA maturation, we reveal the physical association of these plus other mitochondrial activities in a large, stable complex of 136 proteins. It contains a total of seven proteins involved in RNA processing including RNase P and RNase Z, five out of six subunits of the mitochondrial RNA degradosome, components of the fatty acid synthesis pathway, translation, metabolism and protein folding. At the RNA level, there are the small and large rRNA subunits and RNase P RNA. Surprisingly, this complex is absent in an oar1Δ deletion mutant of the type II fatty acid synthesis pathway, supporting a recently published functional link between pre-tRNA processing and the FAS II pathway—apparently by integration into a large complex as we demonstrate here. Finally, the question of mt-RNase P localization within mitochondria was investigated, by GFP-tracing of a known protein subunit (Rpm2p). We find that about equal fractions of RNase P are soluble versus membrane-attached

    RNA binding properties of conserved protein subunits of human RNase P

    Get PDF
    Human nuclear RNase P is required for transcription and processing of tRNA. This catalytic RNP has an H1 RNA moiety associated with ten distinct protein subunits. Five (Rpp20, Rpp21, Rpp25, Rpp29 and Pop5) out of eight of these protein subunits, prepared in refolded recombinant forms, bind to H1 RNA in vitro. Rpp20 and Rpp25 bind jointly to H1 RNA, even though each protein can interact independently with this transcript. Nuclease footprinting analysis reveals that Rpp20 and Rpp25 recognize overlapping regions in the P2 and P3 domains of H1 RNA. Rpp21 and Rpp29, which are sufficient for reconstitution of the endonucleolytic activity, bind to separate regions in the catalytic domain of H1 RNA. Common themes and discrepancies in the RNA-protein interactions between human nuclear RNase P and its related yeast and archaeal counterparts provide a rationale for the assembly of the fully active form of this enzyme

    Cleavage mediated by the P15 domain of bacterial RNase P RNA

    Get PDF
    Independently folded domains in RNAs frequently adopt identical tertiary structures regardless of whether they are in isolation or are part of larger RNA molecules. This is exemplified by the P15 domain in the RNA subunit (RPR) of the universally conserved endoribonuclease P, which is involved in the processing of tRNA precursors. One of its domains, encompassing the P15 loop, binds to the 3′-end of tRNA precursors resulting in the formation of the RCCA–RNase P RNA interaction (interacting residues underlined) in the bacterial RPR–substrate complex. The function of this interaction was hypothesized to anchor the substrate, expose the cleavage site and result in re-coordination of Mg2+ at the cleavage site. Here we show that small model-RNA molecules (~30 nt) carrying the P15-loop mediated cleavage at the canonical RNase P cleavage site with significantly reduced rates compared to cleavage with full-size RPR. These data provide further experimental evidence for our model that the P15 domain contributes to both substrate binding and catalysis. Our data raises intriguing evolutionary possibilities for ‘RNA-mediated’ cleavage of RNA

    Pseudo-Replication of [GADV]-Proteins and Origin of Life

    Get PDF
    The RNA world hypothesis on the origin of life is generally considered as the key to solve the “chicken and egg dilemma” concerning the evolution of genes and proteins as observed in the modern organisms. This hypothesis, however, contains several serious weak points. We have a counterproposal called [GADV]-protein world hypothesis, abbreviated as GADV hypothesis, in which we have suggested that life originated from a [GADV]-protein world, which comprised proteins composed of four amino acids: Gly [G], Ala [A], Asp [D], and Val [V]. A new concept “pseudo-replication” is crucial for the description of the emergence of life. The new hypothesis not only plausibly explains how life originated from the initial chaotic protein world, but also how genes, genetic code, and proteins co-evolved
    corecore