352 research outputs found

    Anthropometric indices of Gambian children after one or three annual rounds of mass drug administration with azithromycin for trachoma control.

    Get PDF
    BACKGROUND: Mass drug administration (MDA) with azithromycin, carried out for the control of blinding trachoma, has been linked to reduced mortality in children. While the mechanism behind this reduction is unclear, it may be due, in part, to improved nutritional status via a potential reduction in the community burden of infectious disease. To determine whether MDA with azithromycin improves anthropometric indices at the community level, we measured the heights and weights of children aged 1 to 4 years in communities where one (single MDA arm) or three annual rounds (annual MDA arm) of azithromycin had been distributed. METHODS: Data collection took place three years after treatment in the single MDA arm and one year after the final round of treatment in the annual MDA arm. Mean height-for-age, weight-for-age and weight-for-height z scores were compared between treatment arms. RESULTS: No significant differences in mean height-for-age, weight-for-age or weight-for-height z scores were found between the annual MDA and single MDA arms, nor was there a significant reduction in prevalence of stunting, wasting or underweight between arms. CONCLUSIONS: Our data do not provide evidence that community MDA with azithromycin improved anthropometric outcomes of children in The Gambia. This may suggest reductions in mortality associated with azithromycin MDA are due to a mechanism other than improved nutritional status

    Endomicroscopic and transcriptomic analysis of impaired barrier function and malabsorption in environmental enteropathy

    Get PDF
    Introduction: Environmental enteropathy (EE) is associated with growth failure, micronutrient malabsorption and impaired responses to oral vaccines. We set out to define cellular mechanisms of impaired barrier function in EE and explore protective mechanisms. Methods: We studied 49 adults with environmental enteropathy in Lusaka, Zambia using confocal laser endomicroscopy (CLE); histology, immunohistochemistry and mRNA sequencing of small intestinal biopsies; and correlated these with plasma lipopolysaccharide (LPS) and a zinc uptake test. Results: CLE images (median 134 for each study) showed virtually ubiquitous small intestinal damage. Epithelial defects, imaged by histology and claudin 4 immunostaining, were predominantly seen at the tips of villi and corresponded with leakage imaged in vivo by CLE. In multivariate analysis, circulating log-transformed LPS was correlated with cell shedding events (β = 0.83; P = 0.035) and with serum glucagon-like peptide-2 (β = -0.13; P = 0.007). Zinc uptake from a test dose of 25mg was attenuated in 30/47 (64%) individuals and in multivariate analysis was reduced by HIV, but positively correlated with GLP-2 (β = 2.72; P = 0.03). There was a U-shaped relationship between circulating LPS and villus surface area. Transcriptomic analysis identified 23 differentially expressed genes in severe enteropathy, including protective peptides and proteins. Conclusions: Confocal endomicroscopy, claudin 4 immunostaining and histology identify epithelial defects which are probably sites of bacterial translocation, in the presence of which increased epithelial surface area increases the burden of translocation. GLP 2 and other protective peptides may play an important role in mucosal protection in EE

    Causal Pathways from Enteropathogens to Environmental Enteropathy: Findings from the MAL-ED Birth Cohort Study

    Get PDF
    Background Environmental enteropathy (EE), the adverse impact of frequent and numerous enteric infections on the gut resulting in a state of persistent immune activation and altered permeability, has been proposed as a key determinant of growth failure in children in low- and middle-income populations. A theory-driven systems model to critically evaluate pathways through which enteropathogens, gut permeability, and intestinal and systemic inflammation affect child growth was conducted within the framework of the Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) birth cohort study that included children from eight countries. Methods Non-diarrheal stool samples (N = 22,846) from 1253 children from multiple sites were evaluated for a panel of 40 enteropathogens and fecal concentrations of myeloperoxidase, alpha-1-antitrypsin, and neopterin. Among these same children, urinary lactulose:mannitol (L:M) (N = 6363) and plasma alpha-1-acid glycoprotein (AGP) (N = 2797) were also measured. The temporal sampling design was used to create a directed acyclic graph of proposed mechanistic pathways between enteropathogen detection in non-diarrheal stools, biomarkers of intestinal permeability and inflammation, systemic inflammation and change in length- and weight- for age in children 0–2 years of age. Findings Children in these populations had frequent enteric infections and high levels of both intestinal and systemic inflammation. Higher burdens of enteropathogens, especially those categorized as being enteroinvasive or causing mucosal disruption, were associated with elevated biomarker concentrations of gut and systemic inflammation and, via these associations, indirectly associated with both reduced linear and ponderal growth. Evidence for the association with reduced linear growth was stronger for systemic inflammation than for gut inflammation; the opposite was true of reduced ponderal growth. Although Giardia was associated with reduced growth, the association was not mediated by any of the biomarkers evaluated. Interpretation The large quantity of empirical evidence contributing to this analysis supports the conceptual model of EE. The effects of EE on growth faltering in young children were small, but multiple mechanistic pathways underlying the attribution of growth failure to asymptomatic enteric infections had statistical support in the analysis. The strongest evidence for EE was the association between enteropathogens and linear growth mediated through systemic inflammation

    Epigenetic polypharmacology: from combination therapy to multitargeted drugs

    Get PDF
    The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed

    Age specific aetiological agents of diarrhoea in hospitalized children aged less than five years in Dar es Salaam, Tanzania

    Get PDF
    \ud This study aimed to determine the age-specific aetiologic agents of diarrhoea in children aged less than five years. The study also assessed the efficacy of the empiric treatment of childhood diarrhoea using Integrated Management of Childhood Illness (IMCI) guidelines. This study included 280 children aged less than 5 years, admitted with diarrhoea to any of the four major hospitals in Dar es Salaam. Bacterial pathogens were identified using conventional methods. Enzyme Linked Immunosorbent Assay (ELISA) and agglutination assay were used to detect viruses and intestinal protozoa, respectively. Antimicrobial susceptibility was determined using Kirby-Bauer disk diffusion method. At least one of the searched pathogens was detected in 67.1% of the cases, and mixed infections were detected in 20.7% of cases. Overall, bacteria and viruses contributed equally accounting for 33.2% and 32.2% of all the cases, respectively, while parasites were detected in 19.2% patients. Diarrhoeagenic Escherichia coli (DEC) was the most common enteric pathogen, isolated in 22.9% of patients, followed by Cryptosporidium parvum (18.9%), rotavirus (18.1%) and norovirus (13.7%). The main cause of diarrhoea in children aged 0 to 6 months were bacteria, predominantly DEC, while viruses predominated in the 7-12 months age group. Vibrio cholerae was isolated mostly in children above two years. Shigella spp, V. cholerae and DEC showed moderate to high rates of resistance to erythromycin, ampicillin, chloramphenicol and tetracycline (56.2-100%). V. cholerae showed full susceptibility to co-trimoxazole (100%), while DEC and Shigella showed high rate of resistance to co-trimoxazole; 90.6% and 93.3% respectively. None of the bacterial pathogens isolated showed resistance to ciprofloxacin which is not recommended for use in children. Cefotaxime resistance was found only in 4.7% of the DEC. During the dry season, acute watery diarrhoea is the most common type of diarrhoea in children under five years in Dar es Salaam and is predominantly due to DEC, C. parvum, rotaviruses and noroviruses. Constant antibiotic surveillance is warranted as bacteria were highly resistant to various antimicrobial agents including co-trimoxazole and erythromycin which are currently recommended for empiric treatment of diarrhoea.\u

    Avaliação molecular de norovírus em pacientes com gastroenterite aguda

    Full text link
    INTRODUÇÃO: O norovírus foi recentemente identificado como o principal causador de surtos de gastroenterite aguda de origem não bacteriana em todo o mundo e está envolvido em episódios de origem alimentar. Neste estudo, foram avaliados pacientes com sintomas de gastroenterite aguda pelo período de um ano, a fim de se avaliar duas metodologias na identificação do NoV - a reação em cadeia por polimerase convencional e em tempo real -, incidência, sazonalidade e genótipo predominante. MÉTODOS: Após a extração do RNA, 50 amostras foram analisadas pela metodologia de PCR convencional e 365 amostras foram analisadas pela metodologia de PCR em tempo real. Todas as amostras que apresentaram resultado positivo pelas duas metodologias ou discordante foram sequenciadas, ao todo, 13 amostras foram sequenciadas. RESULTADOS: Das 50 amostras testadas pelas duas metodologias, 7 apresentaram resultado positivo pelo método convencional e 15 pelo método da PCR em tempo real. Do total de 365 amostras testadas pela metodologia de PCR, em tempo real, 48 foram positivas. Em relação às amostras sequenciadas, todas mostraram ser NoV do genogrupo II. Em relação à distribuição da incidência de amostras, positivas para NoV, ao longo do ano, pôde ser observada uma frequência de casos positivos maior na primavera, chegando a 29,7% em novembro. CONCLUSÕES: Observamos que o PCR em tempo real é o método mais sensível para a identificação do Nov, que a incidência do NoV é de 13,2% e o genogrupo II prevalece na população avaliada, sendo a primavera o período de maior taxa de infecção.INTRODUCTION: Norovírus was recently identified as the main cause of outbreaks of acute gastroenteritis of non-bacterial origin worldwide and it is involved in episodes of foodborne origin. In this study, patients with symptoms of acute gastroenteritis were evaluated over a one-year period, in order to evaluate two methods for identifying norovírus (real-time and conventional polymerase chain reaction), along with its incidence, seasonality and predominant genotype. METHODS: After RNA extraction, 50 samples were analyzed using conventional PCR and 365 were analyzed using real-time PCR. All the samples that presented positive results using both methods or discordant results were sequenced. In all, 13 samples were sequenced. RESULTS: Out of the 50 samples tested using both methods, seven presented a positive result from the conventional method and 15 from real-time PCR. Out of the total of 365 samples tested using real-time PCR, 48 were positive. All of the sequenced samples were shown to present norovírus of genogroup II. Regarding the distribution of norovírus-positive sample incidence over the course of the year, higher frequency of positive cases was observed during the southern hemisphere spring, reaching 29.7% in November. CONCLUSIONS: We observed that real-time PCR was more sensitive for identifying norovírus. The incidence of norovírus was 13.2% and genogroup II predominated among the population evaluated, with the greatest infection rate in the southern hemisphere spring

    Natural Plasmodium infection in neotropical primates in the island of São Luís, state of Maranhão, Brazil

    Full text link
    The states that make up the Legal Amazon Region, which include the state of Maranhão, account for 99% of registered cases of human malaria in Brazil. It is also believed that transmission of malaria from nonhuman primates (NHP) to humans occurs in this region, because of current reports of seroepidemiological results from samples from humans and NHP coexisting in the same areas. This study aimed to make morphological, serological and molecular diagnoses of Plasmodium spp. in neotropical primates on the island of São Luís, state of Maranhão, Brazil. The diagnostic techniques used were optical microscopy, the polymerase chain reaction (PCR) and the indirect immunofluorescence assay (IFA). From June 2009 to April 2010, 70 NHP were sampled: 50 at the Wild Animal Screening Center (CETAS), located in the municipality of São Luís and 20 free-living individuals that were caught in a private reserve located in the municipality of São Jose de Ribamar, state of Maranhão. Under an optical microscope, 140 slides (two from each animal) were evaluated and five animals (7.1%) were found to be positive. IFA did not detect anti-Plasmodium spp. From PCR on the 70 animals sampled, amplified Plasmodium spp. products were observed in 13 samples, of which eight (61.5%) were from free-living animals and five (38.5%) were from animals at CETAS
    corecore