167 research outputs found

    Epistatic and Combinatorial Effects of Pigmentary Gene Mutations in the Domestic Pigeon

    Get PDF
    SummaryUnderstanding the molecular basis of phenotypic diversity is a critical challenge in biology, yet we know little about the mechanistic effects of different mutations and epistatic relationships among loci that contribute to complex traits. Pigmentation genetics offers a powerful model for identifying mutations underlying diversity and for determining how additional complexity emerges from interactions among loci. Centuries of artificial selection in domestic rock pigeons (Columba livia) have cultivated tremendous variation in plumage pigmentation through the combined effects of dozens of loci. The dominance and epistatic hierarchies of key loci governing this diversity are known through classical genetic studies [1–6], but their molecular identities and the mechanisms of their genetic interactions remain unknown. Here we identify protein-coding and cis-regulatory mutations in Tyrp1, Sox10, and Slc45a2 that underlie classical color phenotypes of pigeons and present a mechanistic explanation of their dominance and epistatic relationships. We also find unanticipated allelic heterogeneity at Tyrp1 and Sox10, indicating that color variants evolved repeatedly though mutations in the same genes. These results demonstrate how a spectrum of coding and regulatory mutations in a small number of genes can interact to generate substantial phenotypic diversity in a classic Darwinian model of evolution [7]

    Renormalized kinetic theory of classical fluids in and out of equilibrium

    Full text link
    We present a theory for the construction of renormalized kinetic equations to describe the dynamics of classical systems of particles in or out of equilibrium. A closed, self-consistent set of evolution equations is derived for the single-particle phase-space distribution function ff, the correlation function C=C=, the retarded and advanced density response functions χR,A=δf/δϕ\chi^{R,A}=\delta f/\delta\phi to an external potential ϕ\phi, and the associated memory functions ΣR,A,C\Sigma^{R,A,C}. The basis of the theory is an effective action functional Ω\Omega of external potentials ϕ\phi that contains all information about the dynamical properties of the system. In particular, its functional derivatives generate successively the single-particle phase-space density ff and all the correlation and density response functions, which are coupled through an infinite hierarchy of evolution equations. Traditional renormalization techniques are then used to perform the closure of the hierarchy through memory functions. The latter satisfy functional equations that can be used to devise systematic approximations. The present formulation can be equally regarded as (i) a generalization to dynamical problems of the density functional theory of fluids in equilibrium and (ii) as the classical mechanical counterpart of the theory of non-equilibrium Green's functions in quantum field theory. It unifies and encompasses previous results for classical Hamiltonian systems with any initial conditions. For equilibrium states, the theory reduces to the equilibrium memory function approach. For non-equilibrium fluids, popular closures (e.g. Landau, Boltzmann, Lenard-Balescu) are simply recovered and we discuss the correspondence with the seminal approaches of Martin-Siggia-Rose and of Rose.and we discuss the correspondence with the seminal approaches of Martin-Siggia-Rose and of Rose.Comment: 63 pages, 10 figure

    Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome

    Get PDF
    A homozygous mutational change in the Ataxia-Telangiectasia and RAD3 related (ATR) gene was previously reported in two related families displaying Seckel Syndrome (SS). Here, we provide the first identification of a Seckel Syndrome patient with mutations in ATRIP, the gene encoding ATR-Interacting Protein (ATRIP), the partner protein of ATR required for ATR stability and recruitment to the site of DNA damage. The patient has compound heterozygous mutations in ATRIP resulting in reduced ATRIP and ATR expression. A nonsense mutational change in one ATRIP allele results in a C-terminal truncated protein, which impairs ATR-ATRIP interaction; the other allele is abnormally spliced. We additionally describe two further unrelated patients native to the UK with the same novel, heterozygous mutations in ATR, which cause dramatically reduced ATR expression. All patient-derived cells showed defective DNA damage responses that can be attributed to impaired ATR-ATRIP function. Seckel Syndrome is characterised by microcephaly and growth delay, features also displayed by several related disorders including Majewski (microcephalic) osteodysplastic primordial dwarfism (MOPD) type II and Meier-Gorlin Syndrome (MGS). The identification of an ATRIP-deficient patient provides a novel genetic defect for Seckel Syndrome. Coupled with the identification of further ATR-deficient patients, our findings allow a spectrum of clinical features that can be ascribed to the ATR-ATRIP deficient sub-class of Seckel Syndrome. ATR-ATRIP patients are characterised by extremely severe microcephaly and growth delay, microtia (small ears), micrognathia (small and receding chin), and dental crowding. While aberrant bone development was mild in the original ATR-SS patient, some of the patients described here display skeletal abnormalities including, in one patient, small patellae, a feature characteristically observed in Meier-Gorlin Syndrome. Collectively, our analysis exposes an overlapping clinical manifestation between the disorders but allows an expanded spectrum of clinical features for ATR-ATRIP Seckel Syndrome to be define

    Application of Homozygosity Haplotype Analysis to Genetic Mapping with High-Density SNP Genotype Data

    Get PDF
    BACKGROUND: In families segregating a monogenic genetic disorder with a single disease gene introduction, patients share a mutation-carrying chromosomal interval with identity-by-descent (IBD). Such a shared chromosomal interval or haplotype, surrounding the actual pathogenic mutation, is typically detected and defined by multipoint linkage and phased haplotype analysis using microsatellite or SNP genotype data. High-density SNP genotype data presents a computational challenge for conventional genetic analyses. A novel non-parametric method termed Homozygosity Haplotype (HH) was recently proposed for the genome-wide search of the autosomal segments shared among patients using high density SNP genotype data. METHODOLOGY/PRINCIPAL FINDINGS: The applicability and the effectiveness of HH in identifying the potential linkage of disease causative gene with high-density SNP genotype data were studied with a series of monogenic disorders ascertained in eastern Canadian populations. The HH approach was validated using the genotypes of patients from a family affected with a rare autosomal dominant disease Schnyder crystalline corneal dystrophy. HH accurately detected the approximately 1 Mb genomic interval encompassing the causative gene UBIAD1 using the genotypes of only four affected subjects. The successful application of HH to identify the potential linkage for a family with pericentral retinal disorder indicates that HH can be applied to perform family-based association analysis by treating affected and unaffected family members as cases and controls respectively. A new strategy for the genome-wide screening of known causative genes or loci with HH was proposed, as shown the applications to a myoclonus dystonia and a renal failure cohort. CONCLUSIONS/SIGNIFICANCE: Our study of the HH approach demonstrates that HH is very efficient and effective in identifying potential disease linked region. HH has the potential to be used as an efficient alternative approach to sequencing or microsatellite-based fine mapping for screening the known causative genes in genetic disease study

    Metabolic cutis laxa syndromes

    Get PDF
    Cutis laxa is a rare skin disorder characterized by wrinkled, redundant, inelastic and sagging skin due to defective synthesis of elastic fibers and other proteins of the extracellular matrix. Wrinkled, inelastic skin occurs in many cases as an acquired condition. Syndromic forms of cutis laxa, however, are caused by diverse genetic defects, mostly coding for structural extracellular matrix proteins. Surprisingly a number of metabolic disorders have been also found to be associated with inherited cutis laxa. Menkes disease was the first metabolic disease reported with old-looking, wrinkled skin. Cutis laxa has recently been found in patients with abnormal glycosylation. The discovery of the COG7 defect in patients with wrinkled, inelastic skin was the first genetic link with the Congenital Disorders of Glycosylation (CDG). Since then several inborn errors of metabolism with cutis laxa have been described with variable severity. These include P5CS, ATP6V0A2-CDG and PYCR1 defects. In spite of the evolving number of cutis laxa-related diseases a large part of the cases remain genetically unsolved. In metabolic cutis laxa syndromes the clinical and laboratory features might partially overlap, however there are some distinct, discriminative features. In this review on metabolic diseases causing cutis laxa we offer a practical approach for the differential diagnosis of metabolic cutis laxa syndromes

    Perception of isolated chords: Examining frequency of occurrence, instrumental timbre, acoustic descriptors and musical training

    Get PDF
    This study investigated the perception of isolated chords using a combination of experimental manipulation and exploratory analysis. Twelve types of chord (five triads and seven tetrads) were presented in two instrumental timbres (piano and organ) to listeners who rated the chords for consonance, pleasantness, stability and relaxation. Listener ratings varied by chord, by timbre, and according to musical expertise, and revealed that musicians distinguished consonance from the other variables in a way that other listeners did not. To further explain the data, a principal component analysis and linear regression examined three potential predictors of the listener ratings. First, each chord’s frequency of occurrence was obtained by counting its appearances in selected works of music. Second, listeners rated their familiarity with the instrumental timbre in which the chord was played. Third, chords were described using a set of acoustic features derived using the Timbre Toolbox and MIR Toolbox. Results of the study indicated that listeners’ ratings of both consonance and stability were influenced by the degree of musical training and knowledge of tonal hierarchy. Listeners’ ratings of pleasantness and relaxation, on the other hand, depended more on the instrumental timbre and other acoustic descriptions of the chord

    CtIP Mutations Cause Seckel and Jawad Syndromes

    Get PDF
    Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5) but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2). Here, we report two mutations in the CtIP (RBBP8) gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder

    Mutation in the Gene Encoding Ubiquitin Ligase LRSAM1 in Patients with Charcot-Marie-Tooth Disease

    Get PDF
    Charcot-Marie-Tooth disease (CMT) represents a family of related sensorimotor neuropathies. We studied a large family from a rural eastern Canadian community, with multiple individuals suffering from a condition clinically most similar to autosomal recessive axonal CMT, or AR-CMT2. Homozygosity mapping with high-density SNP genotyping of six affected individuals from the family excluded 23 known genes for various subtypes of CMT and instead identified a single homozygous region on chromosome 9, at 122,423,730–129,841,977 Mbp, shared identical by state in all six affected individuals. A homozygous pathogenic variant was identified in the gene encoding leucine rich repeat and sterile alpha motif 1 (LRSAM1) by direct DNA sequencing of genes within the region in affected DNA samples. The single nucleotide change mutates an intronic consensus acceptor splicing site from AG to AA. Direct analysis of RNA from patient blood demonstrated aberrant splicing of the affected exon, causing an obligatory frameshift and premature truncation of the protein. Western blotting of immortalized cells from a homozygous patient showed complete absence of detectable protein, consistent with the splice site defect. LRSAM1 plays a role in membrane vesicle fusion during viral maturation and for proper adhesion of neuronal cells in culture. Other ubiquitin ligases play documented roles in neurodegenerative diseases. LRSAM1 is a strong candidate for the causal gene for the genetic disorder in our kindred

    TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism.

    Get PDF
    DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.This work was supported by funding from the Medical Research Council and the European Research Council (ERC, 281847) (A.P.J.), the Lister Institute for Preventative Medicine (A.P.J. and G.S.S.), Medical Research Scotland (L.S.B.), German Federal Ministry of Education and Research (BMBF, 01GM1404) and E-RARE network EuroMicro (B.W), Wellcome Trust (M. Hurles), CMMC (P.N.), Cancer Research UK (C17183/A13030) (G.S.S. and M.R.H), Swiss National Science Foundation (P2ZHP3_158709) (O.M.), AIRC (12710) and ERC/EU FP7 (CIG_303806) (S.S.), Cancer Research UK (C6/A11224) and ERC/EU FP7 (HEALTH-F2- 2010-259893) (A.N.B. and S.P.J.).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ng.345
    • …
    corecore