681 research outputs found
The Molecularly Imprinted Polymers. Influence of Monomers on The Properties of Polymers - A Review
The synthesis of MIPs for two types of templates (herbicides, and flavonoids) and their application in analytical chemistry are discussed. Particular attention has been paid the issue of bonding the template and selection of appropriate monomer in different types of compounds. This short review aims at presenting the molecular imprinting technology (MIT) which is considered as an attractive method to produce impressive receptors for application in analytical chemistry. The challenge of designing and synthesizing a molecularly imprinted polymer (MIP) can be a daunting prospect to the uninitiated practitioner, simply because of the number of experimental variables involved, e.g. the nature and levels of template, functional monomers, cross-linkers, solvents, initiators and even the method of initiation and the duration of polymerization. Indubitably, the most important place of the polymer is its quotheartquot or the cavity corresponding to the template and the waynbs
Towards trajectory anonymization: a generalization-based approach
Trajectory datasets are becoming popular due to the massive usage of GPS and locationbased services. In this paper, we address privacy issues regarding the identification of individuals in static trajectory datasets. We first adopt the notion of k-anonymity to trajectories and propose a novel generalization-based approach for anonymization of trajectories. We further show that releasing
anonymized trajectories may still have some privacy leaks. Therefore we propose a randomization based reconstruction algorithm for releasing anonymized trajectory data and also present how the underlying techniques can be adapted to other anonymity standards. The experimental results on real and synthetic trajectory datasets show the effectiveness of the proposed techniques
Influence of Zn excess on compositional, structural and vibrational properties of Cu2ZnSn0.5Ge0.5Se4 thin films and their effect on solar cell efficiency
This Accepted Manuscript will be available for reuse under a CC BY-NC-ND licence after 24 months of embargo periodThe effect of Zn content on compositional, structural and vibrational properties of Cu2ZnSn1-xGexSe4 (CZTGSe, x ~ 0.5) thin films is studied. Kesterite layer is deposited by co-evaporation onto 5 × 5 cm2 Mo/SLG substrate followed by a thermal treatment at maximum temperature of 480 °C, obtaining areas with different composition and morphology which are due to the sample position in the co-evaporation system and to the non-uniform temperature distribution across the substrate. Kesterite layers with higher Zn amounts are characterized by lower Cu and Ge contents; however, a uniform Ge distribution through the absorber layer is detected in all cases. The excess Zn concentration leads to the formation of ZnSe secondary phase on the surface and in the bulk of the absorber as determined by Raman spectroscopy. When higher Ge content and no ZnSe are present in the absorber layer, a compact structure is formed with larger grain size of kesterite. This effect could explain the higher Voc of the solar cell. The Zn content does not affect the bandgap energy significantly (Eg near 1.3 eV), although the observed effect of Zn excess in CZTGSe results in a decreased device performance from 6.4 to 4.2%. This investigation reveals the importance of the control of the off-stoichiometric CZTGSe composition during the deposition process to enhance solar cells propertiesThis work was supported by Spanish Ministry of Science, Innovation and Universities Project WINCOST (ENE2016-80788-C5-2-R) and European Project INFINITE CELL (H2020-MSCA-RISE-2017-777968). ARP also acknowledges financial support from Community of Madrid within Youth Employment Program (PEJD-2017-PRE/IND-4062). MG acknowledges the financial support from ACCIÓ-Generalitat de Catalunya within the TECNIOspring Plus fellowship (TECSPR18-1-0048
Dysfunctional telomeres in primary cells from Fanconi anemia FANCD2 patients
© 2012 Joksic et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Fanconi anemia (FA) is characterized by sensitivity to DNA cross-linking agents, mild cellular, and marked clinical radio sensitivity. In this study we investigated telomeric abnormalities of non-immortalized primary cells (lymphocytes and fibroblasts) derived from FA patients of the FA-D2 complementation group, which provides a more accurate physiological assessment than is possible with transformed cells or animal models. Results: We analyzed telomere length, telomere dysfunction-induced foci (TIFs), sister chromatid exchanges (SCE), telomere sister chromatid exchanges (T-SCE), apoptosis and expression of shelterin components TRF1 and TRF2. FANCD2 lymphocytes exhibited multiple types of telomeric abnormalities, including premature telomere shortening, increase in telomeric recombination and aberrant telomeric structures ranging from fragile to long-string extended telomeres. The baseline incidence of SCE in FANCD2 lymphocytes was reduced when compared to control, but in response to diepoxybutane (DEB) the 2-fold higher rate of SCE was observed. In contrast, control lymphocytes showed decreased SCE incidence in response to DEB treatment. FANCD2 fibroblasts revealed a high percentage of TIFs, decreased expression of TRF1 and invariable expression of TRF2. The percentage of TIFs inversely correlated with telomere length, emphasizing that telomere shortening is the major reason for the loss of telomere capping function. Upon irradiation, a significant decrease of TIFs was observed at all recovery times. Surprisingly, a considerable percentage of TIF positive cells disappeared at the same time when incidence of γ-H2AX foci was maximal. Both FANCD2 leucocytes and fibroblasts appeared to die spontaneously at higher rate than control. This trend was more evident upon irradiation; the percentage of leucocytes underwent apoptosis was 2.59- fold higher than that in control, while fibroblasts exhibited a 2- h delay before entering apoptosis. Conclusion:
The results of our study showed that primary cells originating from FA-D2 patients display shorten telomeres, elevated incidence of T-SCEs and high frequency of TIFs. Disappearance of TIFs in early response to irradiation represent distinctive feature of FANCD2 cells that should be examined further.This article is made available through the Brunel Open Access Publishing Fund. This work was supported by the Ministry of Education and Science of the Republic of Serbia (Project No.173046)
Revealing the beneficial effects of Ge doping on Cu2ZnSnSe4 thin film solar cells
Kesterite (CZTSe) is a promising thin film photovoltaic absorber material due to its composition of more earth abundant materials compared to mature thin film photovoltaic technologies. Up to now, power conversion efficiencies are still lower and its main problem is the low open circuit voltage (Voc). Recently, a novel sintering approach using a nanometric Ge layer showed a large increase in device performance and especially in Voc. In this work, in-depth solar cell characterization as well as Raman and Photoluminescence studies of devices employing different Ge doped CZTSe absorber layers is presented. The main focus is to reveal the beneficial effects of Ge doping and furthermore investigate the interaction of Ge and Na. For low Ge doping an increase in charge carrier concentration is observed, resulting in devices with Voc of 460 mV, which corresponds to Voc deficits (Eg/q–Voc) of 596 mV a value comparable to current record devices. For high Ge amounts admittance spectroscopy measurements identified the appearance of a deep defect which can explain the observed deterioration of solar cell performance. Additional Na provided during crystallization of high Ge doped devices can reduce the density of this deep defect and recover device performance. These results indicate that Na plays an important role in defect passivation and we propose a defect model based in the interaction of group IV elements and Na with Cu vacancies
St. Augustine and Said Nursi on Introspection as a Vehicle for Change
St. Augustine, a fourth century philosopher and scholar (354-430), illustrates the significance of undergoing a process of introspection through his Confessions. Readers are taken by the hand and led through his childhood, adolescence, and adulthood all the while being immersed in his reflective thoughts. While Augustine does not make explicit mentions of how political affairs should be directed in Confessions in contrast to his later work, City of God, he sets up the model that one should follow if desiring social change; namely, focusing on inner change first. Particularly, Augustine makes mention of many instances of implicit and explicit violence in his youth which impact his later developed understandings of violence in the public sphere. While Augustine is a clear advocate of participating in the social life, he makes the process of individual introspection a prerequisite so as to ensure the efficacy of the former.
Author information: Aysenur Guc is a senior at Rutgers University, New Brunswick studying philosophy and religion. In the near future, she hopes to pursue graduate studies
Designing Excited States: Theory-Guided Access to Efficient Photosensitizers for Photodynamic Action
Cataloged from PDF version of article.The in silico design of tetraradical S 1 states was validated experimentally through synthesis, followed by characterization including phosphorescence measurements, use of trap molecules, and cell culture studies, leading to a series of orthogonal dimers of Bodipy chromophores with remarkable singlet oxygen efficiencies (see picture). A new path for the rational development of efficient photosensitizers is thus revealed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals
A non-destructive Raman spectroscopy has been widely used as a complimentary method to X-ray diffraction characterization of Cu2ZnSnS4 (CZTS) thin films, yet our knowledge of the Raman active fundamental modes in this material is far from complete. Focusing on polarized Raman spectroscopy provides important information about the relationship between Raman modes and CZTS crystal structure. In this framework the zone-center optical phonons of CZTS, which is most usually examined in active layers of the CZTS based solar cells, are studied by polarized resonant and non-resonant Raman spectroscopy in the range from 60 to 500 cm(-1) on an oriented single crystal. The phonon mode symmetry of 20 modes from the 27 possible vibrational modes of the kesterite structure is experimentally determined. From in-plane angular dependences of the phonon modes intensities Raman tensor elements are also derived. Whereas a strong intensity enhancement of the polar E and B symmetry modes is induced under resonance conditions, no mode intensity dependence on the incident and scattered light polarization configurations was found in these conditions. Finally, Lyddane-Sachs-Teller relations are applied to estimate the ratios of the static to high-frequency optic dielectric constants parallel and perpendicular to c-optical axis
Spectroscopic ellipsometry study of Cu2ZnSnS4 bulk poly-crystals
The linear optical properties of Cu2ZnSnS4 bulk poly-crystals have been investigated using spectroscopic ellipsometry in the range of 1.2-4.6 eV at room temperature. The characteristic features identified in the optical spectra are explained by using the Adachi analytical model for the interband transitions at the corresponding critical points in the Brillouin zone. The experimental data have been modeled over the entire spectral range taking into account the lowest E0 transition near the fundamental absorption edge and E1A and E1B higher energy interband transitions. In addition, the spectral dependences of the refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity values have been accurately determined and are provided since they are essential data for the design of Cu2ZnSnS4 based optoelectronic devicesThe research leading to the presented results was partially
supported by the European Project INFINITE-CELL (Ref.
H2020-MSCA-RISE-2017-777968, 2017–2021, www.infinitecell.eu)
and the Spanish MINECO Projects “WINCOST”
(ENE2016-80788-C5-2-R) and PHOTOMANA (TEC2015-
69916-C2-1-R). The authors from the Institute of Applied
Physics appreciate the financial support from STCU 6224 and
from the Institutional Project No. CSSDT 15.817.02.04
Kesterite thin films of Cu2ZnSnS4 obtained by spray pyrolysis
Thin films of Cu2ZnSnS4 CZTS were deposited using the spray pyrolysis method as relatively fast and vacuum free method. Obtained samples were analyzed using the X Ray Fluorescence, grazing incidence X Ray Diffraction and Raman Spectroscopy techniques. Analysis showed close to stoichiometry composition of the films with kesterite type structure but poor crystalline quality and possible existence of secondary phases. To improve the quality of the films, the as prepared layers were annealed in the presence of elemental Sn and S. Comparison of the results before and after annealing showed a strong improvement of the crystalline quality and a significant reduction of concentration of secondary phases of the films without significant change of composition. The measured optical band gap is equal to 1.52 and 1.55 eV in the as prepared and annealed films, respectively. The optical absorption coefficient is found to be gt; 10 4 cm
- …
