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Abstract: 

Kesterite (CZTSe) is a promising thin film photovoltaic absorber material due to its composition 

of more earth abundant materials compared to mature thin film photovoltaic technologies. Up 

to now, power conversion efficiencies are still lower and its main problem is the low open 

circuit voltage (Voc). Recently, a novel sintering approach using a nanometric Ge layer showed 

a large increase in device performance and especially in Voc. In this work, in-depth solar cell 

characterization as well as Raman and Photoluminescence studies of devices employing 

different Ge doped CZTSe absorber layers is presented. The main focus is to reveal the 

beneficial effects of Ge doping and furthermore investigate the interaction of Ge and Na. For 

low Ge doping an increase in charge carrier concentration is observed, resulting in devices with 

Voc of 460 mV, which corresponds to Voc deficits (Eg/q–Voc) of 596 mV a value comparable to 

current record devices. For high Ge amounts admittance spectroscopy measurements 

identified the appearance of a deep defect which can explain the observed deterioration of 

solar cell performance. Additional Na provided during crystallization of high Ge doped devices 

can reduce the density of this deep defect and recover device performance.  These results 

indicate that Na plays an important role in defect passivation and we propose a defect model 

based in the interaction of group IV elements and Na with Cu vacancies.  
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1. Introduction 

Kesterites are quaternary semiconductor compound based on Cu, Zn, Sn, and Se and/or S 

(Cu2ZnSn(S,Se)4 - CZTSSe). In recent years, these materials have attracted more and more 

attention due to the similarity of their properties to the already more established Cu(In,Ga)Se2 

(CIGSe) photovoltaic absorbers and a composition free of scare elements like In and Ga. 

Currently the certified record efficiency of sulphur and selenium containing solid solution 

Cu2ZnSn(S,Se)4 based solar cells  is 12.6% which is still much lower than efficiencies of CIGSe 

record devices which recently surpassed 22%.[1], [2] One of the main challenges so far for 

kesterite solar cells is the low open circuit voltage. The Voc depends on the bandgap of the 

absorber and can be reduced due to recombination.[3] Therefore, to compare absorbers with 

different bandgap a so called Voc deficit is introduced, which is defined as Voc-def = Eg/q-Voc. 

Record kesterite devices hardly overcome a Voc deficit of 0.6 V, whereas record CIGSe devices 

show Voc deficits of below 0.4 V.[1], [2] The reasons for this lack of Voc are currently intensively 

investigated. Besides the occurrence of detrimental secondary phases different possible 

explanation were proposed.  

Enhanced interface recombination was proposed as one reason.[4]–[7] It could be linked to a 

cliff like band alignment observed for high bandgap, i.e. sulphur rich kesterite absorbers and 

the CdS buffer layer.[8], [9] However, for low bandgap, i.e. selenium rich kesterite this is not 

the case.[9]–[12] For sulphur pure absorbers, Voc losses due to recombination at the interface 

can be overcome by employing alternative buffer layer different than CdS with better band 

alignment.[13], [14] Therefore, interface recombination cannot be the main cause for the high 

Voc loss.  

A low minority carrier lifetime was suggested as further reason for Voc loss, however 

theoretical device simulation shows that low minority carrier lifetime alone does not account 

for all Voc loss.[7], [15]  
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Furthermore, the presence of tail states was proposed as a reason for low Voc values.[7], [16], 

[17] Tail states are a non-zero density of states located at the bandgap edges, which reduces 

the optical bandgap to a so called mobility gap. Band tails are evidenced by the fact that the 

maximum of the peak of photoluminescence measurements of kesterite samples is usually 

noticeable red-shifted compared to the optical bandgap which can be explained by band tails, 

as band-tail to band-tail transition are observed.[7], [11], [16] Furthermore, a slow decay of 

the IQE signal below bandgap which is frequently observed in kesterite devices is another 

indication for sub-bandgap absorption.[7], [18] Electrostatic potential fluctuations or bandgap 

fluctuations are proposed to be responsible for this non zero density of states within the 

bandgap.[7] The origins of electrostatic potential fluctuation are charged defects whereas 

bandgap fluctuations can be explained by local in homogeneities in the absorber layer, like 

non-uniform composition, ordered/disordered domains or secondary phases.[7], [17] Tail 

states can be quantified by the Urbach Energy Eu because sub-bandgap absorption can be 

described by � ∝ exp	�− 	
�	
	�


.[19] De Wolf et al.[20] showed for different photovoltaic 

materials a linear relationship between Urbach energy and Voc deficit, where lowest Eu resulted 

in lowest Voc deficit. Cu/Zn disorder in the kesterite lattice was suspected to be responsible for 

tail states, however recent studies show that up to now no clear correlation between Cu/Zn 

ordering, tail states, and further Voc deficit could be found and the origins of the large tails are 

still not totally clear.[11], [17]  

Deep defects could be another reason for the reduced Voc values of kesterite solar cells. 

Larramona et al. showed that by careful control of the Sn content during synthesis, the 

formation of deep defects related to Sn vacancies/antisites could be avoided and device 

performance improved.[21] Wei et al. observed a deep donor defect which compensates the 

CZTSSe absorber and proposed that the deep defect together with a short carrier diffusion 

length could be responsible for high Voc deficit.[22] Furthermore, trap assisted tunnelling 

recombination is suggested as possible reason for low voltage.[18], [23]  
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Recently, a novel sintering approach using a nanometric Ge layer deposited onto metallic 

precursor stacks or nanocrystalline precursors prior to a reactive annealing in Se and Sn 

atmosphere showed a large increase in device performance and especially in Voc.[24]–[26] 

Differently to beneficial Ge alloying in kesterites reported previously [27]–[30] minimal  

quantities of Ge are observed in the final CZTSe absorber using this Ge nanolayer approach. 

[24]–[26] 

The goal of this work is to get a deeper insight into the beneficial effects of Ge doping on 

device performance. It is surprising that there is an optimum amount of Ge in the range of 5-

15 nm that has to be added during synthesis of either metal stacks or nanocrystalline 

precursors to improve device performance. Higher Ge amounts added enhance grain growth 

significantly but are detrimental for cell performance. [24], [25], [31]  The purpose of this study 

is to shed light on the beneficial effects of Ge doping by defect spectroscopy as well as Raman 

and photoluminescence (PL) measurements. Three different solar cells devices out of a series 

with different Ge-doping are presented here in detail. The first one was synthesized without 

Ge addition (0 nm Ge), the second was synthesized with 10 nm Ge evaporated on top of the 

nanocrystalline precursor before a crystallization step, which corresponds to the range of 

optimal Ge doping. The third was obtained employing high Ge addition (50 nm Ge) during 

crystallization step under selenium atmosphere. Furthermore, the strong interaction of Ge and 

Na is demonstrated by investigating Ge and additionally Na doped absorbers.  

 

2. Experimental details 

First Cu/Sn/Cu/Zn metallic stacks deposited by DC magnetron sputtering onto Mo coated soda 

lime glass were selenized at low temperatures of 350ºC for 30 minutes under Ar flow keeping 

the pressure at 1.5 mbar to form a nanocrystalline precursor layer. On top of the precursors 

different thicknesses of Ge or NaF+Ge where thermally evaporated. Then the precursors with 
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the different capping layers were annealed under selenium atmosphere using a two-step 

profile, with a first step at 400ºC and Ar flux keeping the pressure at 1.5 mbar for 15 minutes, 

followed by a high temperature step at 550ºC and 1 bar for 15 minutes. A detailed description 

of the Ge doping process can be found in [24]. Solar cell devices were finished by depositing 

CdS buffer and iZnO/ITO window layer as described in more detail in [32]. A post deposition 

annealing of the complete cell on a hotplate in air at temperature below 250ºC was carried out 

to improve device performance.[33] 

Solar cells were characterized measuring JV curves under illumination of a 100 mW/cm
2
 

simulated solar spectrum by an Abet technology AAA solar simulator. Temperature dependent 

JV curves were recorded using a closed cycle He cryostat and an Oriel small area solar 

simulator calibrated to 1 sun with a Si reference cell.  

External quantum efficiency (EQE) measurements were performed using a Bentham PVE300 

system calibrated with Si and Ge photodiodes. 

CV and Cf measurements at different temperatures (from 100K to 320K) were carried out using 

a liquid nitrogen cryostat from SemiMetrics Ltd and an Agilent E4980A LCR meter employing a 

parallel circuit model to extract the capacitance of the device. 

Raman scattering (RS) and photoluminescence (PL) spectra were measured using the iHR320 

Horiba Jobin Yvon spectrometer coupled with CCD and InGaAs detectors. The first detector 

was used for RS and second for PL spectra. Solid state laser with a 532 nm wavelength was 

used as excitation source for both methods. Spectra were measured in backscattering 

configuration through the Olympus metallographic objective and using the maximum laser 

power which ensured the absence of the thermal effects on the samples. Laser power was 

changed by changing the current applied for the laser. Sample temperature was varied in the 

closed-cycleHe cryostat and measured by Si-diode. 
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3. Results and discussion 

3.1.  Electrical and Raman characterization 

 

 
Figure 1. JV curves of solar cells doped with different amount of Ge during absorber 

synthesis. 

 

 
Figure 2. External quantum efficiency (a), bandgap extraction of EQE compared to RT PL (b), 

and extraction of Urbach energy from ln(-ln(1-EQE)) below the bandgap. 

 

Table 1. Device parameters of solar cells with different Ge doping. Ncv and SCR are extracted 

at 132 kHz. 

sample Efficiency 

[%] 

FF 

[%] 

Jsc 

[mA/cm
2
] 

Voc 

[mV] 

Rseries 

[Ω.cm
2
] 

Rshunt 

[Ω.cm
2
] 

A J0 

[mA/cm
2
] 

Eg 

[eV] 

Eg/q-

Voc 

[V] 

Ncv 

[cm
-3

] 

SCR 

[nm] 

0 nm Ge 7.9 64.9 30.2 405 0.02 340 1.8 5.1x10
-3

 1.057 0.652 1.8x10
15

 317 

10 nm 

Ge 
8.6 64.1 29.3 460 0.27 780 1.9 3.2x10

-3
 1.056 0.596 1.5x10

16

 114 

50 nm 

Ge 
6.3 52.5 30.5 393 1.23 272 2.2 7.1x10

-2
 1.072 0.679 6.2x10

14

 622 

 

In Figure 1 the JV curves of the three devices are shown as well as the device parameters are 

listed in Table 1. A clear improvement in Voc is observed for the 10 nm Ge device compared to 
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the 0 nm Ge reference. For the 50 nm Ge device a decrease in Voc is observed. The bandgap 

was extracted from quantum efficiency (QE) measurements by assuming collection just in the 

space charge region (SCR, W), thus QE can be approximated by �� ≅ 1 − �xp	(−��)	, where 

� is the absorption coefficient.[34] The absorption coefficient is proportional to the bandgap 

of the absorber by[35]  �(ℎ�) ∝ �ℎ� − �� . Thus by plotting (ln(1 − ��))�	��.		ℎ�	and linear 

fitting of the long wavelength (low energy part) one can get the bandgap as the intercept with 

the ℎ�-axis (see Figure 2 (b)). The bandgap stays constant around 1.05 eV up to a Ge amount 

of 10 nm and increases for the 50 nm Ge case. This is expected for higher Ge incorporation in 

the lattice.[36] 

Raman measurements confirm the low Ge incorporation into the CZTSe lattice for Ge amounts 

up to 10 nm, as is shown in Figure 3. In the 0 nm Ge sample the position of all Raman peaks at 

room temperature (RT) corresponds to the ones published previously for CZTSe 

compounds[37]  and no peaks of secondary phases were found. The position of the most 

intense peak for the sample with 0 nm Ge and 10 nm of Ge are similar, whereas the position of 

this peak in the 50 nm Ge sample shifts about 1 cm
-1

 to the higher wavenumbers. This 

indicates that in the last sample a Cu2ZnSnxGe1-xSe4 solid solution was formed with x ≈ 0.9[37], 

while in the sample with 10 nm of Ge almost no Ge was incorporated and Ge acts most 

possibly as a dopant. However, in the sample with 10 nm of Ge a small increase of the 

asymmetry of the most intense peak comparing to the reference sample was observed. 

According to Valakh et.al., this is related to an increase of disorder in the samples.[38], [39] 

With lowering the sample temperature a small blue shift of all Raman peaks was detected, 

which reached the 2 cm
-1

 at 20 K. Note that the shift was independent on the Ge content 

which indicates that its inclusion in the lattice do not create any additional strains and the 

change of lattice tensile with temperature, which is responsible for the shift of Raman peaks, is 

similar for all the samples.  
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Figure  3. Raman scattering spectra of CZTSe layer with different thickness of Ge layer 

measured at different temperatures. The inset shows the enlarged region with the most 

intense peak. 

Since the bandgap stays constant up to 10 nm Ge while the Voc increases, the Voc deficit can be 

reduced to below 600 mV. The increase in Voc can therefore not be related to a bandgap 

increase due to Ge incorporation into the lattice[36] and has to have different origins as will be 

discussed in the following. The efficiency follows the same trend. The highest efficiency of 

8.6% is obtained for the lowest Voc deficit. In literature band tails were proposed as one of the 

main performance bottleneck in kesterite based solar cells causing low Voc values.[7], [40] One 

can characterize band tails which are responsible for sub-bandgap absorption by the Urbach 

energy Eu. Below the bandgap the absorption coefficient can be approximated by by 

� ∝ exp	�− 	
�	
	�


 to extract Eu.[19]  In Figure 5.3 (c)  ln(�) ∝  /�"��. (� − ��) is shown for 

all devices and Eu extracted by linear fitting. An Urbach energy of around 25 meV is obtained 

with no significant difference between the different devices. Furthermore, these band tails are 

responsible for an pronounced red-shift of the main peak of room temperature (RT) 

photoluminescence (PL) measurements compared to the optical bandgap.[11], [16], [17] For all 

different Ge doped samples this red-shift is observed as can be seen in Figure 2 (b).Therefore, 

it can be concluded that Ge doping unfortunately does not modify band tails and reasons for 

efficiency improvements have to be different.  

The diode parameters, like series resistance, diode quality factor and saturation current 

density extracted following  procedure proposed by Sites et al. and Hegedus et al. (see 
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supporting Information S1) are summarized in Table 1.[34], [41] Diode quality factor for all 

three devices is close to 2, where for the 50 nm Ge devices it is slightly higher. This suggest 

that the main recombination path is recombination in the space charge region for all three 

samples.[42] The saturation current density of the 10 nm Ge devices is the lowest, whereas the 

one of the 50 nm Ge samples is one order of magnitude higher indicating an enhanced 

recombination as origin for the lower Voc value obtained. To further investigate recombination 

mechanism in the devices temperature dependent JV measurements were carried out. 

 

 
Figure 4. Temperature dependent dark JV curves (a)-(c) and dark series resitance (d) 

extracted for each temperature and exponential fits to extract activation energies (e). 

In Figure 4, temperature dependent dark JV curves of all 3 devices are shown. Remarkable is 

the increase in series resistance at low temperature for the 50 nm Ge devices, as can be seen 

by the strong downward bending of the JV curves at higher forward bias. An exponential 

increase in series resistance is observed, where for the 50 nm Ge device one can distinguish 

two regions. The observed temperature dependence indicates a thermal activation of the 

carriers, thus the series resistance can be described by #$ % #&exp	(	'()), where Ea is the 

activation energy.[43] In earlier studies this exponential increase in series resistance was 

related to an non-ohmic back contact of Kesterite and MoS(e)2/Mo interface[5] however it is 

more likely that bulk conductivity itself limits the series resistance.[44] Gunawan et al. related 
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the exponential increase in series resistance to a carrier freeze out due to the fact that the 

dominant acceptor defect is quite deep, e.g. 0.13-0.2 eV above the valence band depending on 

the bandgap of the absorber.[44] In Figure 4 the extraction of the activation energies of the 

series resistances are shown for all three devices. For the 10 nm device the lowest activation 

energy of 8 meV was found. For the 0 nm Ge devices it increases to 14 meV, and for the 50 nm 

Ge device two regions have to be distinguished. For the first temperature range of 300-150 K 

an activation energy of 23 meV was found which increases to 48 meV for temperatures <130 K. 

Similar observations of two thermally activated processes are reported in literature, where the 

first activation energy is related to grain boundaries or shallow acceptor like defects and the 

second one at lower temperature to different processes like carrier localization in potential 

wells, radiative recombination or Mott’s variable range hopping where holes occupy shallow 

states in the band gap and if a sufficient high concentration of this states is present the 

overlapping of their wave functions could form an impurity band.[43], [45] Since the high 

temperature activation energy is the lowest for the 10 nm Ge device an reduction of  grain 

boundary barrier height for the optimal Ge doping range of 10 nm could be speculated 

because in this temperature range thermionic emission across grain boundaries is typically the 

dominant conduction mechanism.[46] However, more detailed conductivity measurements of 

the thin films itself would be necessary to confirm it.  

 
Figure 5. Temperature dependent solar cell device parameters (short circuit current (a) and 

efficiency (b)) and extraction of  Voc to 0K (c). 

Besides dark JV-T analysis, the illuminated curves were recorded as well and device 

parameters extracted, In Figure 5 the Jsc, efficiency (eff) as well as Voc for different 

temperatures is shown. From temperature dependent Voc measurements the activation energy 
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of the main recombination path can be determined by extrapolating the Voc to 0K.[42] 

Comparing this value with the bandgap of the absorber could lead to conclude about possible 

Voc limitations due to the interface, i.e. unfavourable band alignment of absorber and buffer 

layer.[42] For the 0 nm Ge and 10 nm Ge values of 0.81 eV and 0.86 eV were obtained, 

respectively. These values are lower than the bandgap extracted from EQE, however since 

kesterite absorbers suffers from strong band tailing the Voc at 0 K should be compared to the 

energy of the radiative recombination in the bulk , i.e. to the maximum of the PL spectrum.[16] 

The values are similar to that of RT PL peaks (see Figure 2(b)) thus for 0 nm Ge and 10 nm Ge 

device the main recombination is bulk recombination as commonly observed for selenium rich 

kesterite.[43] Surprisingly the Voc at 0 K for the 50 nm Ge device is much lower, and an 

activation energy of 0.57 eV is obtained, This could be either related to a non-ideal diode like 

behaviour like a strong temperature dependent diode factor or voltage dependent carrier 

collection which makes the extraction of activation energy invalid[47] or a change of band 

alignment of the Ge containing kesterite with the CdS buffer to a cliff like alignment.     

Furthermore, a strong decrease in Jsc for the 50 nm Ge device at low temperature is observed 

which is correlated with the strong increase of series resistance. For the 0 nm Ge device this 

decrease is less pronounced, and for the 10 nm Ge devices almost no decrease is observed. 

The efficiency behaves the same way, a strong decrease for the 50 nm and 0 nm Ge device, 

whereas the 10 nm Ge devices continuously increases until almost 100 K. Quenching of 

efficiency at low temperature is commonly observed in kesterite devices and related to the 

carrier freeze out, i.e. strong increase of series resistance.[48] Kim et al. showed that by 

employing a In2S3/CdS double buffer layer, the CZTSSe absorber doping level could be 

increased by In doping and the low temperature quenching eliminated, as well as the 

efficiency at room temperature improved.[48] In the following, it will be shown that for the 

optimum Ge doping range of 10 nm also an increase in doping is observed which could explain 

that for the 10 nm Ge device no quenching at all is observed. 
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One interesting feature in the EQE measurements shown in Figure 2 that was not commented 

yet is the increased EQE signal in the long wavelength region for the 50 nm Ge device, which is 

in agreement with a higher Jsc obtained. Doping profiles derived from CV measurements (see 

Figure 6) show an increase in charge carrier density for the 10 nm Ge sample followed by a 

decrease for the 50 nm Ge device. The space charge region (SCR) extracted at 0 V from the 

profiles shows the highest value for the 50 nm Ge case (see Table 1), which can explain the 

improved collection in the long wavelength region of the EQE.  Assuming a change only in the 

absorber doping (N) one can estimate the change in Voc by Δ+,- % .//012(34
3�) .[3] The 

increase in doping of around one order of magnitude from 1.8x10
15

 cm
-3

 to 1.5x10
16

 as it is 

observed for the 0 nm Ge compared to the 10 nm Ge device would result in a Voc improvement 

of 55 mV, which corresponds perfectly to the observed Voc improvements. The decrease of 

doping density for the 50 nm Ge is surprising and might be related to a different mechanism. 

As already observed in previous work [24] there is high frequency dependence, for the 50 nm 

Ge device, of the doping profile observed. This is a strong indication for the presence of deep 

defects.[49]  

 
Figure 6. Doping profiles derived from CV measurements at different frequencies. 

To further investigate defects in the three devices admittance spectroscopy measurements 

were carried out as shown in Figure 7. Two capacitance steps are present in the 50 nm Ge 

device, whereas for the 10 nm Ge device just one step is visible (see Figure 7 (c) and (e)). 

Similar Cf spectra were obtained for devices presented in previous work[24] confirming the 
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reproducibility of the process and measurements. In the Cf spectrum of the 0 nm Ge reference 

device also two steps are visible (see Figure 7 (a)). The defect spectra derived from admittance 

spectroscopy measurements using the method proposed by Walter et al.[50] are shown in 

Figure 7 (b),(d) and (f). For all cases a shallow defect around 100 mV is observed which gets 

shallower for the optimal Ge doping of 10 nm. Remarkable is the appearance of a deep defect 

for the 0 nm Ge as well as the 50 nm Ge device with activation energies above 400 meV. The 

values of activation energy extracted for this set of sample agree well with the once extracted 

from a different set investigated in previous work[24] confirming the reproducibility of the 

processes. Recently Larramona et al. [21] showed that by fine tuning the Sn concentration the 

formation of a deep defect (600 meV), probably CuSn antisites or VCu formed due to Sn loss, 

could be avoided and efficiency increased over 11%.  
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Figure 7. C-f spectra at different temperature (a),(c),(e) and defect spectra derived from it 

(b),(d),(f).  

 

This in in agreement with our observations for 10 nm Ge sample where Ge could compensate 

Sn loss and avoid a deep defect formation like CuSn or Vsn as already proposed in [24]: 

 

	+5" 6 789: 6 ;� → ;�=> 6 ?@5"			(1) 

or 

	AB: 6 ;� → ;�=>			(2) 
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For high Ge content (i.e. 50 nm Ge) the formation of CuSn is less likely because the CZTSe 

absorber are synthesized as Cu poor and in this case group IV element (Sn,Ge) rich. Thus the 

formation of SnCu or GeCu antisites donor defects seems more likely under this growth 

conditions:  

 

+5" 6 D2=> 6 ;� → ;�=> 6 9:78			(3) 

or 

+5" 6 ;� → FG78			(4) 

 

Ge replaces Sn and the excess Sn could lead to the formation of SnCu or GeCu antisites defects. 

SnCu creates a deep donor defect[51], [52] which acts as electron-hole recombination centre 

deteriorating the solar cell performance. This would further explain the lower doping observed 

for high Ge (50 nm) devices due to compensation. Recently Wei et al. [22] showed by 

admittance spectroscopy measurements and simulations that a deep n-type defect is present 

in a 10% CZTSSe solar cell, which could be a key limitations of the device performance and was 

possible assigned to SnCu or SnZn donor defects which is in line with our observations. For the 

optimum Ge doping range of 10 nm Ge added during absorber synthesis the formation of deep 

defects either due to Sn loss or group IV elements antisites defects could be avoided and 

highest device performance is achieved. Still the reason for increased doping, which might be 

responsible for the increased Voc besides the reduced recombination, due to the elimination of 

deep defects and as also evidenced by the lowest saturation current density (see Table 1) is 

not totally clear. A possible interaction of Na, a well-known dopant in chalcogenide 

photovoltaic absorbers and Ge could be responsible for it as will be discussed later on in more 

detail. 
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3.2.  Photoluminescence measurements  

 
Figure 8. PL spectra of CZTSe layer with different thickness of Ge. The spectra were 

normalized to the PL intensity of the 0 nm Ge sample and numbers in the legend show the 

normalization coefficient 

To further investigate possible defects which are active in radiative processes 

photoluminescence (PL) measurements were carried out. Unfortunately due to detector 

limitations possible PL bands related to midgap defects cannot be assessed. Nevertheless 

valuable information about recombination processes and shallow defects can be obtained 

from temperature dependence of PL spectra around the bandgap. In Figure 8, PL spectra of 

three analyzed samples measured at 20 K with highest excitation power are presented. The 

maximum peak position is not changed in the sample with 10 nm of Ge comparing to the 0 nm 

Ge one, while for the sample with 50 nm of Ge a shift to higher energy is observed. This 

correlates with Raman data which indicated the formation of new phase of Cu2ZnSnxGe1-xSe4 

solid solution which has higher band gap than the pure CZTSe phase, and is also coherent with 

the higher band gap observed in EQE data.[36] To determine the nature of the observed PL 

spectra, an excitation power dependence study of PL spectra in all samples has been 

performed. Selected spectra of the sample with 10 nm of Ge are presented in Figure 9(a). 

Analysis of these spectra showed a strong blue shift of the peak maximum with excitation 

power. The increase is about 18 meV/decade (see Figure 9(b)). Additionally the analysis of the 

integrated PL intensity versus excitation power showed an exponential dependence in 

accordance with formulae IPL ~ Iex
k
. The exponent k was found to be lower than 1 (see Figure 

9(c)). This indicates the defect related nature of the observed PL spectra, while the strong blue 
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shift of the maximum is an indication for a quasi-donor-acceptor pair (QDAP) recombination as 

radiative processes in the analyzed samples.[53] The QDAP recombination was previously 

found in pure CZTSe[54] and CZTS[55], [56] compounds, as well as in their solid solutions.[54] 

It is characterized by a strong influence of the band bending due to a fluctuating potential, to 

the PL band maximum position, which could be described by [53]: 

�IJ % �� − (�K 6 �L) − 2Γ						(5) 

Here Eg is the band gap energy, EA and ED are the activation energies of the acceptor and 

donor, respectively, involved in the irradiative process and coefficient Γ is the average 

potential wells depth.[53] 

 
Figure 9. (a) Excitation power dependence of the PL spectra of CZTSe layer with 10 nm of Ge. 

(b) Maximum peak position vs. excitation power. (c) Integrated PL intensity vs. excitation 

power. 

The analysis of temperature dependence of PL spectra (Figure 10(a)) showed a red shift of the 

band maximum up to ~ 100 K and a blue shift at higher temperatures (Figure 10(b)). Similar 

dependencies were observed in case of CZTSSe solid solutions for the QDAP emission[54], [57]. 

A strong quenching of PL intensity of about 3 orders in the analyzed temperature range 20 – 
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300 K (Figure 10(c)) was found in the studied samples. This quenching could be described using 

the equation with two activation energies [58]: 

 

OIJ %	 O&
1 6 PQexp	(−�Q/.R/) 6 P�exp	(−��/.R/)

					(6) 

 

where a1 and a2 are the rate parameters of the non-irradiative process with activation energies 

E1 and E2. I0 is PL intensity at lowest temperature and kB is Boltzmann constant. Both activation 

energies obtained from fitting of integrated PL intensity are almost constant in the 0 nm and 

10 nm Ge samples and increase in case of sample with 50 nm of Ge (see Figure 10(c)). Note 

that in the framework of QDAP recombination model the lower E1 energy is attributed to the 

average value of the valley depth, from which the carriers should be thermally activated for 

the subsequent recombination, rather than to the activation energy of some shallow defect 

level.[54] Obtained values of E1, i.e. the depth valley in the analyzed samples, showed only a 

slight change with Ge content used in agreement with extracted Urbach energy from EQE for 

all samples (see Figure 2(c)). However, the E1 value is smaller than the tails energy for all 

samples, yielding that potential fluctuations are only one of possible reasons of their 

formation. 

The higher activation energy E2 could be attributed to a donor or acceptor level involved in the 

recombination process. At temperatures higher than 250 K the radiative mechanism of the 

observed PL spectra was found to be changed from QDAP to the band to impurity (BI) 

recombination, which is proven by the constant maximum position with excitation power 

change at 300 K. Since the CZTSe absorber has p-type conductivity the transitions acceptor-

conduction band is most probable as origin for the observed PL band near room temperature. 

From the band gap energy found in EQE and the position of PL band maximum at 300 K the 

activation energy of the involved acceptor level (EA) was roughly estimated to be in the range 

58 – 79 meV for all the samples. This range is in agreement with the energy level found by 
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admittance spectroscopy. Some discrepancies found  for 0 nm and 50 nm Ge device higher 

could be due to uncertainties of extraction of defect energies when two capacitance steps 

overlap or the increasing series resistance at low temperatures.[59], [60] Following the logic 

proposed by Levcenco et al.[54] E2 energy of 70-118 meV is attributed to a donor defect level 

(ED) and a deeper acceptor level should exist in the band gap to ensure the QDAP 

recombination process.  

In summary, from the study of defect levels present in the band gap using admittance 

spectroscopy and photoluminescence, we obtained two shallow levels at ~ 0.1 eV (one donor 

and one acceptor) and one deep level at ~ 0.4 eV. The later only exist in 0 nm and 50 nm Ge 

samples and could be one of the reason of their reduced efficiency comparing to 10 nm Ge 

device. 

  

 

 
Figure 10. (a) Temperature dependence of the PL spectra of CZTSe layer with 10 nm of Ge. 

(b) Maximum peak position vs. sample temperature. (c) Integrated PL intensity vs. sample 

temperature. 
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3.3. Interaction of Ge and Na 

The reasons for the increased charge carrier density for the optimum Ge doping of 10 nm, as 

observed by CV profiling (see Figure 6) is still not clear yet. Recently our group discovered a 

possible interaction of Ge and Na, a well-known dopant in kesterite based solar cells.[61] As 

shown in Giraldo et al. [61] a higher amount of Na was found in the absorber layer synthesized 

using the optimum range of about 10 nm Ge, whereas higher Ge amounts used during 

synthesis led to a decrease in Na in the absorber. The Na amount found correlate well with the 

doping profiles obtained, where as it is shown in this study a higher doping level is obtained for 

10 nm Ge devices whereas for higher Ge amounts (>25 nm) a decrease in doping density is 

observed.[61] In Giraldo et al. NaOx crystals were found on top of absorbers synthesized under 

addition of high Ge quantities, thus an extraction of Na from the absorber towards the 

absorber surface was proposed due to the formation of a GeSe-liquid phases which can 

dissolve Na in large amounts. Furthermore, element IV (Sn,Ge) rich growth increases the 

probability of GeCu and SnCu anitistes and therefore hinder the incorporation of Na due to the 

fact that Na most likely occupies Cu vacancies (NaCu).[61], [62] Furthermore, absorbers 

synthesized on sodium free substrates like Si/SiO2 showed that Ge assisted synthesis is only 

beneficial for device performance if additional Na is added by evaporation of a NaF layer.[61] 

This fact was further confirmed by different Na free substrates like stainless steel.[63] To get 

more insights in the possible interaction between Na and Ge, a sample series with optimum as 

well as high Ge range was prepared but with additional Na added by depositing NaF on top of 

nanocrystalline precursors before Ge deposition. Thermally evaporated NaF on top of 

precursor layers has been shown already in literature to be an effective source of additional Na 

during the synthesis of CZTSe absorber layers.[64] Two different thicknesses of NaF (10 nm and 

15 nm) where thermally evaporated onto nanocrystalline precursors followed by deposition of 

a 10 nm and 25 nm Ge capping layer in the same evaporation chamber without breaking the 

vacuum. Then these nanocrystalline precursors with Ge and NaF+Ge capping layer were 

annealed under selenium atmosphere as described in the experimental details. In Figure 11, 
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box plots of the device parameters of the different samples are shown. For the optimum Ge 

amount of 10 nm, the addition of Na has no significant influence on device performance. 

However, for the sample synthesized with large Ge amount of 25 nm, additional Na clearly 

improves device performance especially Voc. To probe if the additional NaF layer may change 

the Ge incorporation into the film, the bandgap values extracted from EQE (Figure 12(a)) 

measurements are compared in Figure 12(b) for the 25 nm Ge series. No significant difference 

is observed, indicating that the additional Na has no influence on Ge incorporation from the 

point of view of possible bandgap changes. 

 

 
Figure 11. Box plot of device parameters of absorbers synthesized under the addition of Ge 

and NaF. 
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Figure 12. EQE as well as bandgap extraction from EQE. 

Two different devices are investigated in more detail in the following. One which employs an 

absorber layer that was synthesized under Ge rich condition by adding 25 nm Ge on top of 

nanocrystalline precursor prior selenization and one which was synthesized using the same 

amount of Ge but  additionally 15 nm NaF were evaporated on top before Ge evaporation. In 

Figure 13(a), the JV curve of the best cell of the two devices is shown. A clear improvement in 

Voc is observed for the Ge+NaF device and device performance could largely be improved as 

can be seen in Table 2. 
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Figure 13. (a) Doping profiles extracted from CV measurements at different frequencies as 

well as the illuminated JV curves (b) for Ge and Ge+Na doped devices.  

Table 2. Device parameters of solar cells with Ge and Ge+Na doping. Ncv and SCR are 

extracted at 132 kHz. 

Sample 

25 nm 

Ge 

Efficiency 

[%] 

FF 

[%] 

Jsc 

[mA/cm
2
] 

Voc 

[mV] 

Rseries 

[Ω.cm
2
] 

Rshunt 

[Ω.cm
2
] 

A J0 

[mA/cm
2
] 

Eg 

[eV] 

Eg/q-

Voc 

[V] 

Ncv 

[cm
-3

] 

SCR 

[nm] 

+0 nm 

NaF 
6.0 56.7 27.6 381 0.04 246 2.3 4.3x10

-2
 1.055 0.674 5.7x10

15

 161 

+15 nm 

NaF 
7.4 59.4 28.2 441 0.30 359 2.3 2.2x10

-2
 1.054 0.613 1.1x10

16

 118 

 

Doping profiles extracted from CV measurements of the two devices are shown in Figure 13(b). 

An increase in doping density for the Ge+Na device can be observed, as well as the frequency 

dependence of the doping profiles could be reduced. Admittance spectroscopy measurements 

were carried out as well on the devices as can be seen in Figure 14. In the Cf spectrum of the 

device which absorber was synthesized just by 25 nm Ge addition and without additional Na 

(Figure 14 (a)), clearly two capacitance steps can be seen as it was observed for all absorbers 

synthesized using large amounts of Ge (>25 nm). The defect spectra extracted from the Cf 

measurements shows a shallower defect at around 163 meV, which for this device was found 
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at higher activation energy compared to the devices investigated before (see Figure 14(b) and 

compare to Figure 7). Additionally, a deep defect at 325 meV was found as it was detected for 

all devices with absorbers that were synthesized with thick Ge capping layers (>25 nm). Here 

this deep defect seems less pronounced which could be explained by the fact that less Ge (25 

nm instead of 50 nm) was used during synthesis, thus less GeCu or SnCu antisites are probably 

formed. In the Cf spectrum of the 25 nm Ge + 15 nm NaF sample the high temperature 

capacitance step is not obvious anymore and only a step at low temperatures is clearly 

observed, which activation energy was found to be around 113 meV. 

 

 

 
Figure 14. Cf spectra at different temperatures as well as from it derived defect spectra for 

Ge and Ge+Na doped devices. 

The elimination of the deep defect by controlled Na addition confirms the suspected 

interaction between Ge and Na. As proposed in Giraldo et al. large amount of Ge used during 

synthesis, create an element IV (Sn,Ge) rich growth conditions, which could lead to the release 

of Na out of the absorber.[61] The Ge-Na dynamics for this case can be illustrated by  
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D2=> 6 TP5" 6 ;� → ;�=> 6 9:78 6TP			(7) 

or 

TP5" 6;� → FG78 6 TP			(8) 

 

Thus, large amounts of Ge supplied during a synthesis could led to the replacement of NaCu, 

releasing Na of the absorber and led to the formation of SnCu or GeCu antisites, which are deep 

donor defects as discussed earlier and deteriorate cell performance.[51], [52] A sufficient high 

additionally supply of Na can avoid this process and therefore, no deep defects related to GeCu 

or SnCu and higher device performance is observed as could be illustrated by  

 

	+5" 6 D2=> 6 ;� 6 WX → ;�=> 6 D2$> 6 	WX78		(9) 

or 

	+5" 6 ;� 6 WX → WX78 6 ;�				(10) 

 

The observed increased doping density for the Ge+NaF device can be explained by the reduced 

formation of compensating donor defects, and additional due to the expected higher Na 

amount in the absorber, which is known to increase doping of kesterite absorbers and as also 

observed here makes acceptor defects shallower.[62], [65] Therefore, for the optimum Ge 

doping range of around 10 nm Ge, it is reasonable to assume that the right amount of Ge 

added during synthesis on one hand avoids the formation of VSn or CuSn antisites which could 

form due to Sn loss, and furthermore moderates the Na amount inside the final absorber layer. 

4. Conclusions 

A detailed study investigating the beneficial effects of Ge doping on device performance has 

been presented. For the optimal Ge amount provided during synthesis (i.e. around 10 nm), a 

large increase in Voc  is observed, which can be explained by an increase in doping density as 

well as a reduction of recombination due to the fact that the formation of deep defects is 
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avoided as evidenced by admittance spectroscopy. For the device without Ge doping as well as 

for the one synthesized with the addition of a high Ge amount (50 nm), deep midgap defects 

have been found as possible reason for lower device performance and especially higher Voc 

deficit. These defects could potentially be assigned to VSn or CuSn antisites caused due to Sn 

loss, or SnCu or GeCu antisites formed due to element IV rich growth conditions. Controlled Ge 

addition in low quantities could avoid the formation of these defects by compensating possible 

Sn loss, besides the beneficial effects on grain growth due to the formation of liquid Ge-Se 

phase as shown in previous work.[24]   Furthermore, the quenching of efficiency at low 

temperatures commonly reported in kesterite devices is not observed for optimal range of Ge 

doping, thus the device behaviour gets more similar to that of high performance CIGS solar 

cells.[48]  

PL of all three samples shows similar behavior, with QDAP transition at low temperatures and 

BI transitions at RT. The activation energy of acceptor level involved in the BI transition of 58-

79 meV agrees well with the values obtained from admittance spectroscopy of the 10 nm Ge 

sample and is comparable for the 0 nm and 50 nm Ge samples. From fitting of the temperature 

dependence of the integrated PL intensity associated to the QDAP transition a donor level 

between 70-119 meV was found. The activation energy associated with the depth of the 

valleys, due to potential fluctuations, only changes slightly between the samples as well as 

band tails observed from EQE measurements suggesting no significant influence of Ge doping 

to these parameters 

Furthermore, a clear interaction of Ge and Na has been demonstrated. Excessive Na addition 

to samples synthesized under Ge rich condition could avoid the formation of deep defects 

formed normally under this growth conditions. In summary a careful control of group IV 

element content (Ge, Sn) is necessary during the growth of kesterite absorbers to avoid the 

formation of deep defects which are detrimental for the device performance and especially 
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the Voc. This could be either achieved by controlled Ge doping or by additionally supply of Na, 

which as has been demonstrated hinder the formation of detrimental deep defects. 
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The beneficial effect of Ge doping on kesterite absorbers is revealed and insights in kesterite´s 

intrinsic defect chemistry are given.  
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