13 research outputs found

    Acidification and solar drying of manure-based digestate to produce improved fertilizing products

    Get PDF
    The increase in energy and fertilizer consumption makes it necessary to develop sustainable alternatives for agriculture. Anaerobic digestion and digestates appeared to be suitable options. However, untreated digestates still have high water content and can increase greenhouse gas emissions during storage and land application. In this study, manure-derived digestate and solid fraction of digestate after separation were treated with a novel solar drying technology to reduce their water content, combined with acidification to reduce the gaseous emissions. The acidified digestate and acidified solid fraction of digestate recovered more nitrogen and ammonia nitrogen than their respective non-acidified products (1.5–1.3 times for TN; 14 times for TAN). Ammonia and methane emissions were reduced up to 94% and 72% respectively, compared to the non-acidified ones, while N2O increased more than 3 times. Dried digestate and dried acidified digestate can be labeled as NPK organic fertilizer regarding the European regulation, and the dried solid fraction and the improved dried acidified solid fraction can be labeled as N or P organic fertilizer. Moreover, plant tests showed that N concentrations in fresh lettuce leaves were within the EU limit with all products in all the cases. However, zinc concentration appeared to be a limitation in some of the products as their concentration exceeded the European legal limits.This work was funded by the European Union under the Circular Agronomics project (H2020 research and innovation project Nº.773649) and Nutry2Cycle project (H2020 research and innovation project Nº.773682). IRTA thanks the support of the CERCA Program and the Consolidated Research Group TERRA (ref.2017SGR1292), both from the Generalitat de Catalunya. L. Morey thanks the financial support of AGAUR, of the Generalitat de Catalunya (grant reference number 2019FI_B00694). We would like to thank the help of Celia Segura Godoy and Pau Berenguer i Planas during the sampling campaigns.Peer ReviewedPostprint (published version

    Acidification and solar drying of manure-based digestate to produce improved fertilizing products

    Get PDF
    The increase in energy and fertilizer consumption makes it necessary to develop sustainable alternatives for agriculture. Anaerobic digestion and digestates appeared to be suitable options. However, untreated digestates still have high water content and can increase greenhouse gas emissions during storage and land application. In this study, manure-derived digestate and solid fraction of digestate after separation were treated with a novel solar drying technology to reduce their water content, combined with acidification to reduce the gaseous emissions. The acidified digestate and acidified solid fraction of digestate recovered more nitrogen and ammonia nitrogen than their respective non-acidified products (1.5–1.3 times for TN; 14 times for TAN). Ammonia and methane emissions were reduced up to 94% and 72% respectively, compared to the non-acidified ones, while N2O increased more than 3 times. Dried digestate and dried acidified digestate can be labeled as NPK organic fertilizer regarding the European regulation, and the dried solid fraction and the improved dried acidified solid fraction can be labeled as N or P organic fertilizer. Moreover, plant tests showed that N concentrations in fresh lettuce leaves were within the EU limit with all products in all the cases. However, zinc concentration appeared to be a limitation in some of the products as their concentration exceeded the European legal limitsinfo:eu-repo/semantics/publishedVersio

    A collaboratively derived international research agenda on legislative science advice

    Get PDF
    The quantity and complexity of scientific and technological information provided to policymakers have been on the rise for decades. Yet little is known about how to provide science advice to legislatures, even though scientific information is widely acknowledged as valuable for decision-making in many policy domains. We asked academics, science advisers, and policymakers from both developed and developing nations to identify, review and refine, and then rank the most pressing research questions on legislative science advice (LSA). Experts generally agree that the state of evidence is poor, especially regarding developing and lower-middle income countries. Many fundamental questions about science advice processes remain unanswered and are of great interest: whether legislative use of scientific evidence improves the implementation and outcome of social programs and policies; under what conditions legislators and staff seek out scientific information or use what is presented to them; and how different communication channels affect informational trust and use. Environment and health are the highest priority policy domains for the field. The context-specific nature of many of the submitted questions—whether to policy issues, institutions, or locations—suggests one of the significant challenges is aggregating generalizable evidence on LSA practices. Understanding these research needs represents a first step in advancing a global agenda for LSA research.Fil: Akerlof, Karen. George Mason University; Estados UnidosFil: Tyler, Chris. University College London;Fil: Foxen, Sarah Elizabeth. University College London;Fil: Heath, Erin. American Association for the Advancement of Science; Estados UnidosFil: Gual Soler, Marga. American Association for the Advancement of Science; Estados UnidosFil: Allegra, Alessandro. University College London;Fil: Cloyd, Emily T.. American Association for the Advancement of Science; Estados UnidosFil: Hird, John A.. University of Massachussets; Estados UnidosFil: Nelson, Selena M.. George Mason University; Estados UnidosFil: Nguyen, Christina T.. George Mason University; Estados UnidosFil: Gonnella, Cameryn J.. Herndon; Estados UnidosFil: Berigan, Liam A.. Kansas State University; Estados UnidosFil: Abeledo, Carlos R.. Universidad de Buenos Aires; ArgentinaFil: Al Yakoub, Tamara Adel. Yarmouk University; JordaniaFil: Andoh, Harris Francis. Tshwane University Of Technology; Sudáfrica. Tshwane University of Technology; GhanaFil: dos Santos Boeira, Laura. Veredas Institute; BrasilFil: van Boheemen, Pieter. Rathenau Instituut; Países BajosFil: Cairney, Paul. University of Stirling; Reino UnidoFil: Cook Deegan, Robert. Arizona State University; Estados UnidosFil: Costigan, Gavin. Foundation For Science And Technology; Reino UnidoFil: Dhimal, Meghnath. Nepal Health Research Council; NepalFil: Di Marco, Martín Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Sociales. Instituto de Investigaciones "Gino Germani"; ArgentinaFil: Dube, Donatus. National University of Science and Technology; Zimbabu

    Asymptotically flat scalar, Dirac and Proca stars: Discrete vs. continuous families of solutions

    Get PDF
    The existence of localized, approximately stationary, lumps of the classical gravitational and electromagnetic field - geons - was conjectured more than half a century ago. If one insists on exactstationarity, topologically trivial configurations in electro-vacuum are ruled out by no-go theorems for solitons. But stationary, asymptotically flat geons found a realization in scalar-vacuum, where everywhere non-singular, localized field lumps exist, known as (scalar) boson stars. Similar geons have subsequently been found in Einstein-Dirac theory and, more recently, in Einstein-Proca theory. We identify the common conditions that allow these solutions, which may also exist for other spin fields. Moreover, we present a comparison of spherically symmetric geons for the spin 0, 1/2 and 1, emphasizingthe mathematical similarities and clarifying the physical differences, particularly between the bosonic and fermioniccases. We clarify that for the fermionic case, Pauli's exclusion principle prevents a continuous family of solutions for a fixed field mass; rather only a discrete set exists, in contrast with the bosonic case. (C) 2017 The Authors. Published by Elsevier B.V

    A collaboratively derived international research agenda on legislative science advice

    Get PDF
    © 2019, The Author(s). The quantity and complexity of scientific and technological information provided to policymakers have been on the rise for decades. Yet little is known about how to provide science advice to legislatures, even though scientific information is widely acknowledged as valuable for decision-making in many policy domains. We asked academics, science advisers, and policymakers from both developed and developing nations to identify, review and refine, and then rank the most pressing research questions on legislative science advice (LSA). Experts generally agree that the state of evidence is poor, especially regarding developing and lower-middle income countries. Many fundamental questions about science advice processes remain unanswered and are of great interest: whether legislative use of scientific evidence improves the implementation and outcome of social programs and policies; under what conditions legislators and staff seek out scientific information or use what is presented to them; and how different communication channels affect informational trust and use. Environment and health are the highest priority policy domains for the field. The context-specific nature of many of the submitted questions—whether to policy issues, institutions, or locations—suggests one of the significant challenges is aggregating generalizable evidence on LSA practices. Understanding these research needs represents a first step in advancing a global agenda for LSA research

    Building a Science Diplomacy Curriculum

    Get PDF
    Science diplomacy is a fast-growing field of research, education, and practice dedicated to better understanding and reinforcing the connections between science, technology, and international affairs to tackle national and global challenges. Interest from early career scientists and young diplomats to learn more and engage at the science-diplomacy nexus is growing all around the world. However, as a relatively new and multidisciplinary field, we show that science diplomacy has so far been largely taught through extracurricular courses and workshops, often self-organized by university student groups or international scientific organizations, targeting specific disciplinary and geographic audiences. Given this fragmented landscape, we map and categorize current science diplomacy educational offerings in higher education. Despite some coverage of science diplomacy within general science policy programs or courses focused on an issue area (e.g., water diplomacy or environmental diplomacy), a structured foundational course addressing the commonalities of all the scientific and technological issues relevant to international affairs is still lacking. Hence, we first suggest knowledge and key skills scientists and diplomats can learn from each other to bridge the disciplinary divide and engage in science diplomacy scholarship and practice. Building upon it, we then propose cross-cutting, core concepts that can inform the establishment and consolidation of science diplomacy curricula at universities. These aim to be useful to teach science diplomacy to advanced undergraduate and graduate students of all backgrounds and to be adaptable to a wide range of degree programs and disciplines

    Protect the Antarctic Peninsula - before it’s too late

    No full text
    Banning fishing in warming coastal waters and limiting tourism and construction on land will help to protect marine mammals and seabirds.</p
    corecore