19 research outputs found

    Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa.

    Get PDF
    Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies

    S16 and T18 mannosylation sites of LppX are not essential for its activity in phthiocerol dimycocerosates localization at the surface of Mycobacterium tuberculosis

    No full text
    International audienceLppX is an important virulence factor essential for surface localization of phthiocerol dimycocerosates (DIM) in Mycobacterium tuberculosis. Based on Concanavalin A recognition, M. tuberculosis LppX (LppX-tb) was initially proposed to be glycosylated in M. tuberculosis and more recently this glycosylation was characterized by mass spectrometry analysis on LppX-tb expressed and purified from Corynebacterium glutamicum. Here, using this model organism and Mycobacterium smegmatis, we show that S16 and T18 residues of LppX-tb are indeed glycosylated with several hexoses units. Interestingly this glycosylation is strictly dependent on the mannosyl transferase PMT which, in M. tuberculosis, has been reported to be crucial for virulence. Using a site directed mutagenesis approach, we were able to show that the absence of S16 and T18 glycosylation does not alter phthiocerol dimycocerosates (DIM) localization in M. tuberculosis

    Impact of the epoxide hydrolase EphD on the metabolism of mycolic acids in mycobacteria

    Get PDF
    Mycolic acids are the hallmark of the cell envelope in mycobacteria, which include the important human pathogens and Mycolic acids are very long C60-C90 α-alkyl β-hydroxy fatty acids having a variety of functional groups on their hydrocarbon chain that define several mycolate types. Mycobacteria also produce an unusually large number of putative epoxide hydrolases, but the physiological functions of these enzymes are still unclear. Here, we report that the mycobacterial epoxide hydrolase EphD is involved in mycolic acid metabolism. We found that orthologs of EphD from and are functional epoxide hydrolases, cleaving a lipophilic substrate, 9,10--epoxystearic acid, and forming a vicinal diol. The results of EphD overproduction in and BCG Δ strains producing epoxymycolic acids indicated that EphD is involved in the metabolism of these forms of mycolates in both fast- and slow-growing mycobacteria. Moreover, using MALDI-TOF-MS and H NMR spectroscopy of mycolic acids and lipids isolated from EphD-overproducing , we identified new oxygenated mycolic acid species that accumulated during epoxymycolate depletion. Disruption of the gene in specifically impaired the synthesis of ketomycolates and caused accumulation of their precursor, hydroxymycolate, indicating either direct or indirect involvement of EphD in ketomycolate biosynthesis. Our results clearly indicate that EphD plays a role in metabolism of oxygenated mycolic acids in mycobacteria

    Identification of a Terminal Rhamnopyranosyltransferase (RptA) Involved in Corynebacterium glutamicum Cell Wall Biosynthesisâ–ż

    No full text
    A bioinformatics approach identified a putative integral membrane protein, NCgl0543, in Corynebacterium glutamicum, with 13 predicted transmembrane domains and a glycosyltransferase motif (RXXDE), features that are common to the glycosyltransferase C superfamily of glycosyltransferases. The deletion of C. glutamicum NCgl0543 resulted in a viable mutant. Further glycosyl linkage analyses of the mycolyl-arabinogalactan-peptidoglycan complex revealed a reduction of terminal rhamnopyranosyl-linked residues and, as a result, a corresponding loss of branched 2,5-linked arabinofuranosyl residues, which was fully restored upon the complementation of the deletion mutant by NCgl0543. As a result, we have now termed this previously uncharacterized open reading frame, rhamnopyranosyltransferase A (rptA). Furthermore, an analysis of base-stable extractable lipids from C. glutamicum revealed the presence of decaprenyl-monophosphorylrhamnose, a putative substrate for the cognate cell wall transferase

    A Coumarin-Based Analogue of Thiacetazone as Dual Covalent Inhibitor and Potential Fluorescent Label of HadA in Mycobacterium tuberculosis

    No full text
    International audienceA novel coumarin-based molecule, designed as a fluorescent surrogate of a thiacetazone-derived antitubercular agent, was quickly and easily synthesized from readily available starting materials. This small molecule, coined Coum-TAC, exhibited a combination of appropriate physicochemical and biological properties, including resistance toward hydrolysis and excellent antitubercular efficiency similar to that of well-known thiacetazone derivatives, as well as efficient covalent labeling of HadA, a relevant therapeutic target to combat Mycobacterium tuberculosis. More remarkably, Coum-TAC was successfully implemented as an imaging probe that is capable of labeling Mycobacterium tuberculosis in a selective manner, with an enrichment at the level of the poles, thus giving for the first time relevant insights about the polar localization of HadA in the mycobacteria
    corecore