17 research outputs found

    Evaluating the Summer Thermal Structure of Southern Green Bay, Lake Michigan

    Get PDF
    The summer thermal structure of southern Green Bay, Lake Michigan was evaluated using cable moorings equipped with thermistors and a near real-time coastal monitoring buoy. The net heat flux for the southern bay was calculated over the study period. Cold water intrusions from Lake Michigan were tracked using water temperature, with the path of these water masses tracking along the western shore of Green Bay. Water clarity was measured across the study region as kd. Surface diel warming was evaluated and compared with meteorological forcing variables and sensible and latent heat flux to determine the effect of water clarity on the overall thermal structure of Green Bay for the study period. Interannual climate and variation in observed thermal structure at a station in the bay is considered between 2011 and 2012

    CHARACTERIZING CDOM SPECTRAL VARIABILITY FROM SEAS TO SPACE

    Get PDF
    Colored dissolved organic matter (CDOM) absorption varies significantly across the global oceans, presumably due to differences in source and degradation pathways. Tracking this variability on a global, or even regional, scale requires broad temporal and spatial sampling at high frequency. Satellite remote sensing provides this platform; however, current and near future sensors are/will be limited to measurements within the UV and visible wavelengths (\u3e 350 nm) while most optical proxies estimating CDOM composition, and relevant for understanding largescale biogeochemical processes, use wavelengths less than 350 nm. This dissertation examines global variability in CDOM spectral variability utilizing a variety of optical metrics. After assessing global variability in these optical metrics, we considered the ability to observe changes in remotely-sensed reflectance (Rrs(l)) strictly due to Sg variability. Using the radiative transfer software, HydroLight, and data from Lake Superior, modeled Rrs(l) showed that Sg variability significantly alters Rrs(l) in waters where ag(l) contributes \u3e20% to total non-water absorption (at-w(l)) at 440 nm. Based on the proposed signal-to-noise ratio of NASA鈥檚 proposed Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) hyperspectral sensor, Sg variability on the order of 0.001 nm-1 is an observable feature in these waters. We then developed an capable of estimating Sdg free of bias on hyperspectral absorption data. The algorithm shows that the increased spectral resolution of hyperspectral sensors should allow for remote estimation of Sdg and potentially Sg, providing a broad view of biogeochemical variability reflected by Sg

    Temperature-dependent preferences for advertisement-call frequency in females of Hyla versicolor

    Get PDF
    Abstract only availableMale treefrogs produce loud and persistent acoustic signals called advertisement calls to attract mates. Ectothermic animals like frogs face an interesting challenge, in that temperature can significantly impact characteristics of the species-specific advertisement call. The mate-choice preferences of female gray treefrogs (H. versicolor) have been extensively studied (reviewed by Gerhardt & Huber 2002). It has been found that females prefer calls with standard frequency peaks of 1.1 kHz + 2.2 kHz over calls with higher and lower frequencies at 20潞 C. However, it is not known how this preference is affected by temperature. To determine whether acoustic preferences based on frequency are temperature-dependent, I collected female frogs during their breeding season and tested them in a temperature-controlled anechoic testing chamber. I generated ten different computer-synthesized advertisement calls that ranged in frequency between 0.55 + 1.1 kHz to 1.5 + 3.0 kHz. In two-speaker choice tests conducted at three different temperatures (15潞 C, 20潞 C and 25潞 C), females "chose" (moved within 10 cm of a speaker) between a call with standard frequency peaks of 1.1 + 2.2 kHz and one of the nine alternative calls. Preliminary results indicate the preferred frequencies appeared to remain 1.1 + 2.2 kHz at lower temperatures. However, at higher temperatures, female frogs were more likely to approach high-frequency calls. These results will be discussed in the context of known temperature-dependent physiological processes in the inner ear of frogs.NIH grant to H.C. Gerhard

    Deriving inherent optical properties from decomposition of hyperspectral non-water absorption

    Get PDF
    Semi-analytical algorithms (SAAs) developed for multispectral ocean color sensors have benefited from a variety of approaches for retrieving the magnitude and spectral shape of inherent optical properties (IOPs). SAAs generally follow two approaches: 1) simultaneous retrieval of all IOPs, resulting in pre-defined bio-optical models and spectral dependence between IOPs and 2) retrieval of bulk IOPs (absorption and backscattering) first followed by decomposition into separate components, allowing for independent retrievals of some components. Current algorithms used to decompose hyperspectral remotely-sensed reflectance into IOPs follow the first strategy. Here, a spectral deconvolution algorithm for incorporation into the second strategy is presented that decomposes at-w(位) from in situ measurements and estimates absorption due to phytoplankton (aph(位)) and colored detrital material (adg(位)) free of explicit assumptions. The algorithm described here, Derivative Analysis and Iterative Spectral Evaluation of Absorption (DAISEA), provides estimates of aph(位) and adg(位) over a spectral range from 350 to 700鈥痭m. Estimated aph(位) and adg(位) showed an average normalized root mean square difference of \u3c30% and \u3c20%, respectively, from 350 to 650鈥痭m for the majority of optically distinct environments considered. Estimated Sdg median difference was \u3c20% for all environments considered, while distribution of Sdg uncertainty suggests that biogeochemical variability represented by Sdg can be estimated free of bias. DAISEA results suggest that hyperspectral satellite ocean color data will improve our ability to track biogeochemical processes affiliated with variability in adg(位) and Sdg free of explicit assumptions

    Expanding understanding of optical variability in Lake Superior with a 4-year dataset

    Get PDF
    Lake Superior is one of the largest freshwater lakes on our planet, but few optical observations have been made to allow for the development and validation of visible spectral satellite remote sensing products. The dataset described here focuses on coincidently observing inherent and apparent optical properties along with biogeochemical parameters. Specifically, we observe remote sensing reflectance, absorption, scattering, backscattering, attenuation, chlorophyll concentration, and suspended particulate matter over the ice-free months of 2013-2016. The dataset substantially increases the optical knowledge of the lake. In addition to visible spectral satellite algorithm development, the dataset is valuable for characterizing the variable light field, particle, phytoplankton, and colored dissolved organic matter distributions, and helpful in food web and carbon cycle investigations. The compiled data can be freely accessed at https://seabass.gsfc.nasa.gov/archive/URI/Mouw/LakeSuperior/

    Chlorophyll Dynamics from Sentinel-3 Using an Optimized Algorithm for Enhanced Ecological Monitoring in Complex Urban Estuarine Waters

    Get PDF
    Urban estuaries are dynamic environments that hold high ecological and economic value. Yet, their optical complexity hinders accurate satellite retrievals of important biogeochemical variables, such as chlorophyll-a (Chl-a) biomass. Approaches based on a limited number of satellite spectral bands often fail to capture seasonal transitions and sharp spatial gradients in estuarine Chl-a concentrations, inhibiting integration of satellite data into water quality monitoring and conservation programs. We propose a novel approach that utilizes the wide range of spectral information captured by the Ocean and Land Color Instrument (OLCI) to retrieve estuarine Chl-a. To validate our approach, we used measurements in Long Island Sound (LIS), a highly urbanized estuary increasingly susceptible to anthropogenic stressors and climate change. Hyperspectral remote sensing reflectance (Rrs) and Chl-a data representing the spatiotemporal diversity of LIS were used to assess the ideal atmospheric correction approach for OLCI and develop a multi-spectral multiple linear regression (MS-MLR) Chl-a algorithm. POLYMER derived Rrs proved to be the preferred atmospheric correction approach. Evaluation of MS-MLR performance in retrieving Chl-a with in situ Rrs showed good agreement with field measurements. Application to OLCI-retrieved Rrs showed significant improvement (20%-30%) in common error metrics relative to other algorithms assessed. The MS-MLR approach successfully captured seasonal cycles and spatial gradients in Chl-a concentration. Application of this method to urban estuaries and coasts enables accurate, high resolution Chl-a observations at the ecosystem scale and across a range of conditions, as needed for conservation and ecosystem management efforts

    Optical Classification of an Urbanized Estuary Using Hyperspectral Remote Sensing Reflectance

    Get PDF
    Optical water classification based on remote sensing reflectance (Rrs(.)) data can provide insight into water components driving optical variability and inform the development and application of bio-optical algorithms in complex aquatic systems. In this study, we use an in situ dataset consisting of hyperspectral Rrs(.) and other biogeochemical and optical parameters collected over nearly five years across a heavily urbanized estuary, the Long Island Sound (LIS), east of New York City, USA, to optically classify LIS waters based on Rrs(.) spectral shape. We investigate the similarities and differences of discrete groupings (k-means clustering) and continuous spectral indexing using the Apparent Visible Wavelength (AVW) in relation to system biogeochemistry and water properties. Our Rrs(.) dataset in LIS was best described by three spectral clusters, the first two accounting for the majority (89%) of Rrs(.) observations and primarily driven by phytoplankton dynamics, with the third confined to measurements in river and river plume waters. We found AVW effective at tracking subtle changes in Rrs(.) spectral shape and fine-scale water quality features along river-to-ocean gradients. The recently developed Quality Water Index Polynomial (QWIP) was applied to evaluate three different atmospheric correction approaches for satellite-derived Rrs(.) from the Sentinel-3 Ocean and Land Colour Instrument (OLCI) sensor in LIS, finding Polymer to be the preferred approach. Our results suggest that integrative, continuous indices such as AVW can be effective indicators to assess nearshore biogeochemical variability and evaluate the quality of both in situ and satellite bio-optical datasets, as needed for improved ecosystem and water resource management in LIS and similar regions

    Insights on dissolved organic matter production revealed by removal of charge-transfer interactions in senescent leaf leachates

    Get PDF
    Dissolved organic matter (DOM) is a critical part of the global carbon cycle. Currently, it is understood that at least a portion of the chromophoric DOM (CDOM) character can be described through an electronic interaction of charge transfer (CT) complexes. While much work has been done to understand the influence of CT on soil and aquatic reference standard DOM, little is known about the influence of CT in fresh terrestrially derived DOM. In this study, leaf litter leachates from three tree species were treated (reduced) with sodium borohydride to determine the contribution of CT on a source of fresh terrestrial DOM. Leaf litter was sampled four times through decomposition under natural (field) conditions to determine the influence of degradation on response to borohydride treatment. Leaf litter CDOM displayed a unique loss of UVB absorption following borohydride treatment, as well as a homogenizing effect on fluorescence emission character. Humification index (HIX) differentiated Elliot Soil Humic Acid and Suwannee River Fulvic Acid from leaf litter leachates. However, biological index (BIX), and spectral slope metrics were not able to differentiate leaf leachates from these reference standards. Apparent quantum yields were similar in magnitude between leaf leachates and reference standards, although leaf leachate spectra displayed features not evident in reference standards. These results help understand the origins of DOM optical properties and associated quantitative indices in freshly sourced terrestrial material. Overall, these results suggest that even at the initial stages of decomposition, terrestrial CDOM exhibits optical characteristics and responses to removal of electron accepting ketones and aldehydes, through borohydride treatment, similar to more processed CDOM

    DOM degradation by light and microbes along the Yukon River鈥慶oastal ocean continuum

    Full text link
    The Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by \u3e 10%; (2) microbes produce humiclike material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization
    corecore