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ABSTRACT 
 

EVALUATING THE SUMMER THERMAL STRUCTURE OF  
SOUTHERN GREEN BAY, LAKE MICHIGAN 

 
by 

Brice Grunert 

 

The University of Wisconsin – Milwaukee, 2013 
Under the Supervision of Professor J. Val Klump 

 
 

The summer thermal structure of southern Green Bay, Lake Michigan was evaluated using 

cable moorings equipped with thermistors and a near real-time coastal monitoring buoy. 

The net heat flux for the southern bay was calculated over the study period. Cold water 

intrusions from Lake Michigan were tracked using water temperature, with the path of 

these water masses tracking along the western shore of Green Bay. Water clarity was 

measured across the study region as kd. Surface diel warming was evaluated and compared 

with meteorological forcing variables and sensible and latent heat flux to determine the 

effect of water clarity on the overall thermal structure of Green Bay for the study period. 

Interannual climate and variation in observed thermal structure at a station in the bay is 

considered between 2011 and 2012.  
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“And the waves that hit his face, 
Marked the past 

And the farrows on his skin 
Oh, how time goes fast.” 

 
-Of Monsters and Men 

 
 
 
 
 
 
 
 

“’And only as you gasp your dying breath shall you understand, your life amounted to no 
more than one drop in a limitless ocean!’ 

 
Yet what is any ocean but a multitude of drops?” 
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Chapter 1 

1.1 Introduction 
 The Laurentian Great Lakes (herein: Great Lakes) are dynamic systems that respond 

quickly to meteorological forcing and external loadings yet are also large enough that 

energetic and chemical inputs are attenuated and modified within the environment. While 

many of the underlying physical, chemical, and biological processes have been extensively 

studied, meteorological forces, external loadings, and internal processes are changing as the 

climate changes, anthropogenic loading and agricultural practices change, and as the 

ecosystem continues to adjust to primarily past, but ongoing, aquatic invaders (WICCI 2011; 

Waples and Klump 2002; Hecky et al. 2004). Some, such as the reduction in PCB 

contamination exemplified in Green Bay, are for the better, while others, such as the recent 

resurgence of harmful algal blooms (HABs) in western Lake Erie, are certainly for the worse 

(Boyer 2008; Gebremariam 2013). Others, such as changes in wind direction, are still being 

considered. Thus, continual monitoring of the system with more advanced techniques is 

required to better understand what the current state of the system is to allow better 

predictions of where the system is headed. 

 While the most dynamic and unstable systems are the hardest to study, they also 

tend to be the most important from a sociocultural perspective, as the large populations, 

industrial presence, or vast agricultural influence that lead to anthropogenic changes within 

the environments often rely on the affected body of water. Green Bay, Lake Michigan, is an 

ideal example as the region’s population relies on extensive dairy and crop farms within the 

Fox and Wolf River watersheds, an extremely dense industrial presence in the lower Fox 

River dominated by paper mills, and a popular tourist destination in the Door County 

peninsula. While the second largest metropolis in Wisconsin has benefited from these 

activities, the bay itself continues to struggle with persistent hypoxia and anoxia. The threat 
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of a changing climate is predicted to exacerbate the anthropogenic-induced hypoxia which 

persists in the bay. Understanding the driving physical variables within the system is crucial 

to better understand how changes in nutrient and pollutant loading will continue to shape 

how the bay responds, both chemically and biologically. 

1.2 Study Hypotheses 
This study considers the thermal structure of Green Bay south of Chambers Island 

over the stratified period through spatially and temporally dense data sets. While the 

thermal structure can be dominated at times by internal processes, these processes 

originate through meteorological forcing. Thus, heat flux, wind speed and direction, and 

water clarity are considered to determine where heat is being trapped, transported, or 

simply passed through (e.g. returned to the atmosphere) within the system during the study 

period. The goal is that by better understanding these processes, the behavior of thermally 

distinct water masses and the overall thermal behavior of the bay will be understood within 

the context of the study period. To achieve this goal, several hypotheses were considered 

and tested: 

1) Green Bay will exhibit a persistent, stable thermocline at sites with a depth greater than 

15 meters, with shallower sites exhibiting temporary stratification due to cold water 

intrusions. 

2) Water clarity will play a role in the initial distribution of incoming heat energy and will 

result in a greater likelihood of thermal stratification at more turbid sites in the context of 

depth differences. 

3) During the period for which air temperature is warmer than surface water temperature, 

convective mixing within the water column will be reduced and water clarity will exhibit a 

stronger role in determining overall thermal structure of the water column, namely that the 

depth of the mixed layer will be shallower. 
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4) An unstable ABL (air temperature < surface water temperature) will occur earlier in the 

stratified season at sites with reduced water clarity. 

5) Stations along the main axis of the bay and with a long fetch in the predominant wind 

direction will display a mixed layer depth which reacts predominantly to wind speed rather 

than water clarity. 

1.3 Study Site 
Green Bay is a shallow, elongated embayment (mean depth 14m) (Fig. 1.1). Riverine 

input results in an approximate inflow-outflow “residence time” of six years; however, 

warm surface bay waters flow into Lake Michigan’s northwestern region and cold, bottom 

Lake Michigan waters flow into the bay in a reciprocal manner, allowing free exchange of 

water rather than a unilateral flow out of the bay. This exchange is strongly driven by the 

direction, persistence, and speed of regional winds and results in an actual residence time of 

approximately 6 months (Waples and Klump 2002; Klump et al. 2009). This process 

indicates a significant horizontal component to the movement of heat within the system 

Cold water intrusions from Lake Michigan are variable in their flow rate and size. 

However, internal seiches within Green Bay have an approximate periodicity of 8 days 

along the long axis of the bay (southwest-northeast) and are closely tied to the activity of 

Lake Michigan (Kennedy 1982; Hamidi et al., in prep). The cold water intrusions have the 

majority of influence within the hypolimnion of the bay north of Chambers Island, but are 

known to travel south of Chambers Island, occasionally traveling as southerly as Station 8 

(Fig. 1.2). These water masses play a major role in water exchange and stratification in 

lower Green Bay but are notoriously hard to track. 
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Figure 1.1. Green Bay bathymetry map. 
 

Green Bay represents 7% of the surface area and 1.4% of the volume of Lake 

Michigan, yet receives water from one-third of the Lake Michigan watershed and one-third 

of the total nutrient loading to Lake Michigan. The bulk of this loading (70%) comes from 

the Fox River, which enters the bay at the far southern end. The result has been eutrophic to 
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Figure 1.2. Map of Green Bay with station locations indicated by the black circles. 

 

hypereutrophic conditions persisting in the bay for the last century, with Lower Green Bay 

designated as an Area of Concern (AOC) by the Canadian-US International Joint  

Commission (IJC), as well as being listed by the US EPA, due to persistent summer dissolved 

oxygen levels below 5 mg·L-1, and recurring hypoxia (< 2 mg·L-1 ) (Klump et al. 2009). While 

guidelines have been set by the IJC to decrease phosphorus inputs to the Great Lakes, a 

resurgence of harmful algal blooms has occurred in Green Bay, best exemplified by the 

similar but exaggerated conditions in the western and central basins of Lake Erie (Boyer 

2008). This increase in pelagic productivity has led to an increase in occurrence and 

severity of benthic hypoxic events due to an increase in organic carbon settling into the 
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benthos, resulting in sediments that quickly become anoxic (Klump unpublished data). The 

result is occasional fish kills and a lack of an invertebrate forage base for fish, decreasing the 

ecological functioning of the system (Klump et al. 1997; Kastor, pers. comm.). 

While the primary driver of benthic hypoxia in Green Bay is the anthropogenic-

induced hypereutrophic conditions, the set up within this system for such conditions is the 

seasonal stratification typical of large temperate lakes such as the central basin of Lake Erie, 

where varying degrees of benthic anoxia have been linked to the time of formation and the 

stability of the thermocline (Lam et al. 1983). Green Bay hydrodynamic processes, and thus 

stratification, are similar to those seen in other parts of the Great Lakes, with the exception 

that Green Bay is relatively shallow, with depths progressively increasing from south to 

north where the bay exchanges water with Lake Michigan. The result is a dynamic, event-

driven system that allows mixing and breakdown of the thermocline periodically 

throughout the summer with strong storm events (Klump, unpublished data). As in other 

systems, the frequency and longevity of these mixing events plays a critical role in the 

overall health of lower Green Bay (McInnes and Quigg 2010). The role of understanding the 

thermal structure of Green Bay becomes even more important when considering potential 

impacts on the bay due to climate warming and water quality as stress on freshwater 

supplies increases through the 21st century. 

1.4 Thermal Structure 
During the stratified period, Green Bay is dominated by two types of water. 

Southern bay water, due to warm water inputs from the Fox River and rapid heating and 

thorough mixing within the shallow environment, is warm (>15⁰ C) from early to late May 

and increases in temperature through the summer (≥ 25⁰ C ). Cooling of these waters occurs 

primarily during fall turnover (mid-September). Cool northern bay waters maintain a stark 

temperature difference primarily through cold water intrusions from Lake Michigan. While 
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the northern region of Green Bay is deep enough to maintain stable stratification through 

the summer, incoming cold Lake Michigan waters are the dominant component to the 

persistence and stability of the thermocline throughout much of the bay south of Chambers 

Island. Even sites deeper than 15 meters (typically considered the shallowest depth for 

persistent stratification through the summer in Green Bay) would experience significant 

heating of the hypolimnion, and thus weakening of the thermocline, without these inputs. 

This is exemplified when considering historic temperature profiles between Chambers 

Island East and West. The western passage is dominated by substantial but episodic flows of 

cold Lake Michigan water, driven by wind speed and direction, which results in cold 

hypolimnion temperatures and a stable thermocline while shallower, Chambers East sites 

have a less stable thermocline that forms with cold water inputs and then is greatly 

deepened or broken down between these inputs. 

 These cold water intrusions will often travel much farther south than Chambers 

Island. While the cause of these cold water masses is known – strong, persistent 

southwesterly winds resulting in enhanced transport of warm, surface bay waters into Lake 

Michigan and the reciprocal return flow of cold, bottom Lake Michigan waters – the 

mechanics of how and when the flow travels into southerly waters is not well understood. 

Of particular interest is whether this is strictly Lake Michigan water or whether it is 

hypolimnetic northern Green Bay waters that have been displaced. However, the two are 

not necessarily distinct as significant mixing within the hypolimnion between these waters 

is expected. The main difference between hypolimnetic waters throughout the bay is the 

oxygen content of the waters. 

1.5 Light and the Aquatic Environment 
 The behavior of light within pure water is well known (Kirk 1994; Pope and Fry 

1997; others). The degree and significance of light scattering and absorbing particles within 
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the water column of lakes such as the Great Lakes, however, is not well known. Historically, 

chlorophyll was considered the primary absorber, with minerals and other inorganic 

particles comprising the bulk of the light scattering particles within the water column. 

However, chromophoric (or colored) dissolved organic matter (CDOM) is now considered a 

major player in the aquatic environment, as a primarily planktonic by-product in oceanic 

environments and primarily from allocthonous inputs in lakes and coastal environments 

(Gnanadesikan and Anderson 2009; Effler et al. 2010). Absorption behavior for 

phytoplankton and CDOM is relatively well-known (Kirk 1994; Babin et al. 2003; Effler et al. 

2010). However, accurately portraying the absorption and scattering spectra for a 

particular water body is more difficult, as the concentration of the various light absorbing 

and scattering components is typically not known. Additionally, fluctuations in many of 

these components are expected based on the time of year and location within a specific 

water body. 

 This study considers the overall light extinction, or attenuation, coefficient (kd or 

LEC), a composite of the absorption and scattering that has occurred within the water 

column above the depth of measurement. Kd, while not immediately helpful for determining 

specific spectral properties of the water, particularly for remote sensing, is useful as: 1) kd 

indicates the contribution of solar irradiance at a particular depth to local heating 

(primarily) or biological productivity (secondarily) and 2) depending on the instrument, 

can indicate the general optical properties of the water column, e.g. CDOM rich or turbid 

waters will absorb exponentially more light of shorter wavelengths (Murtugudde et al. 

2002; Effler et al. 2010). Some authors consider visible and infrared light within different 

depths of the water column due to the effect each has on local heating within the water 

column. Here, the attenuation of shortwave radiation is considered synonymous with the 

attenuation of light. 
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1.6 Water Clarity 
Physical water parameters, such as temperature, current direction and speed, and 

water residence time, can significantly impact the biological activity of aquatic systems 

(McKinley and Wetzel 1979; King et al. 1999b). Typically, particulate and dissolved organic 

matter (POM and DOM, respectively) are seen as factors directly affecting aquatic biological 

systems by providing alternate trophic pathways (Wetzel 1992; Sadro et al. 2011) and 

altering primary productivity by more rapidly attenuating light (Frenette et al. 2006). 

However, POM and DOM can also affect the thermal structure of a water body, with indirect 

effects on subsequent dissolved oxygen levels and ecotype structure of the water column 

(Mazumder and Taylor 1994; Fee et al. 1996; Pérez-Fuentetaja et al. 1999; Snucins and 

Gunn 2000; Gunn et al. 2001; Houser 2006). 

Water color and clarity have been found to dictate the depth of formation and the 

stability of the thermocline in small lakes in various environments (Fee et al. 1996; Pérez-

Fuentetaja et al. 1999; Snucins and Gunn 2000; Houser 2006). The role of water color and 

clarity in large lake systems has been more contested, with speculation to the overall role in 

thermocline formation and depth of the mixed layer. Mazumder and Taylor (1994) found 

that water clarity played a role in Great Lakes’ depth of stratification, albeit a smaller role 

than meteorological conditions. Simpson and Dickey (1981) also found that water clarity 

significantly affected the depth of stratification in oceanic systems during the summer 

period and suggested that it is crucial to modeling these systems, a finding supported by 

later studies (Schneider and Zhu 1998; Gnanadesikan and Anderson 2009). However, 

Mazumder and Taylor (1994) relied upon a sparse data set, likely resulting in inaccurate 

results for such a large, temporally and spatially complex system as the Great Lakes, and 

oceanic systems are not necessarily accurate representations of large lake environments as 

physical forcing variables can differ significantly due to the spatial scales of these two 

systems (Boyce 1974; Schwab and Beletsky 2003). Fee et al. (1996) suggested that water 
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clarity would not play a role in the thermal structure and stratification of large lakes (>500 

ha), as beyond this size, meteorological forcing variables outlined by Boyce (1974) would 

play the dominant role in mixing depth and subsequent thermal structure. 

Increases in solar radiation in the spring months causes the onset of stratification, 

starting with the appearance of a thermal bar that gradually moves across the surface until 

two layers of water with distinctly different temperatures form. Solar radiation is the 

primary variable dictating water surface temperature; however, it is not necessarily the 

primary variable dictating depth of the mixed layer and subsequent spatial resolution in the 

vertical thermal structure. In water bodies with a large fetch, or large lake systems with 

appropriate depth and size, other variables such as wind forcing, the Coriolis force, surface 

seiche, internal seiche and basin-scale currents play a larger role. Enhanced heating of the 

surface layer during the day can also lead to significant convective mixing as the surface 

waters cool in the evening while the underlying waters remain warmer. Depending on the 

scale, this mixing can be enough to erode the thermocline (King et al. 1997). 

Arguably, solar radiation cannot play a significant role in determining the depth of 

the mixed layer in large lake environments such as the Great Lakes as the effect of solar 

radiation exponentially decreases as the size of the water body increases (and the depth of 

the mixed layer subsequently increases), while meteorological forcing variables often 

increase in intensity as the size of the water body increases (Boyce 1974; Liu and Ross 

1980). However, while the vertical distribution of irradiance can be represented by an 

exponential function, this is inaccurate in shallow waters (<10m) (Simpson and Dickey 

1981). Within the upper two to three meters of the water column, approximately one-third 

of the incident value has been absorbed (primarily longer wavelengths within the visible 

spectrum), resulting in enhanced heat attainment within the surface waters. Additionally, 

during the period of water column stratification in the Great Lakes, the atmospheric 
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boundary layer is at its peak stability (Blanken et al. 2011), which decreases the wind 

speeds and turbulent mixing (Liu and Ross 1980). In turbid environments where the 

majority of solar radiation is trapped within the upper 3m of the water column, such as 

Green Bay, Lake Michigan, the role of water clarity may increase to the point that it becomes 

a key component of the complex interactions that result in the observed mixed layer depth 

and thermal structure of the water column. Green Bay is a unique system to study the 

impact of these different meteorological factors, as it has characteristics of both large and 

small lakes. Its eutrophic conditions, depth and rapid response to changes in wind speed 

and direction are similar to conditions most often seen in small- to medium-sized lakes. 

However, it’s fetch, internal and surface seiches (including effects from Lake Michigan), and 

thermal capacity are more closely aligned with large lakes (Mortimer 1978; Kennedy 1982). 

Ultimately, determining the fate of heat and the amount of solar radiation that is absorbed 

and translated into biochemical energy by phytoplankton will illuminate the transfer of heat 

throughout the water column. Additionally, this will indicate which variables are the driving 

forces behind the observed thermal structure of the water column. 

During the formation of the thermocline, the high stability found within the 

atmospheric boundary layer may result in water clarity playing a large role in the formation 

and depth of thermal stratification. However, the observed depth of the mixed layer may 

depend upon large storm events periodically deepening the mixed layer. Thus, the observed 

mixed layer depth may reflect the strength and frequency of these events in combination 

with the effects of water clarity (Gorham and Boyce 1989). Thus, heat attained by POM and 

DOM via absorption of solar energy may be crucial to the overall thermal structure and 

thermocline stability in Green Bay as observed in oceanic studies (Kara et al. 2005). 

The mechanics of how the thermocline forms and breaks down, as well as its 

stability and interaction with surface and meteorological conditions, is arguably the most 
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critical physical process to understand when attempting to remediate the biological 

conditions of Green Bay and other hypereutrophic environments throughout the Great 

Lakes (Gorham and Boyce 1989; Verburg and Antenucci 2010). Green Bay stratification is 

strongly dependent on the prevailing meteorological conditions and the thermal 

characteristics of the water column from the previous months (Schertzer et al. 1987). 

Within hypereutrophic aquatic environments, high rates of microbial activity, particularly 

in the benthos where organic matter accumulates, can deplete oxygen levels to hypoxic and 

anoxic levels in as little as a month after the onset of stratification, with hypoxic conditions 

largely contingent on the existing and future thermal structure of the water body (Burns et 

al. 2005; Dobiesz and Lester 2009; Valenta et al. 2012; Klump unpub. data). Considering 

that Green Bay and similar Great Lakes systems (i.e. Western Lake Erie, Saginaw Bay) rely 

upon water column mixing to re-oxygenate the benthos,  understanding the thermal 

structure and seasonal cycle of the thermocline is critical to efforts to remediate ecosystem 

functioning within these environments. Concerns about increasing temperatures due to 

climate change have also led to efforts to better understand the coupled dynamics that can 

affect the benthic respiration rates within these systems. The data obtained in 2012 are 

crucial to this effort, as the abnormally hot and dry summer may allow the year to be a 

model for future conditions within the bay. 

1.7 Heat Budget 
One of the most powerful tools in understanding the thermal processes of a system 

such as Green Bay is to compose an energy or heat budget for the system. A heat budget 

allows for the driving variables – shortwave radiation, longwave radiation, sensible heat, 

latent heat, and advection – and their fluxes to be estimated, which in turn indicates the 

sources or sinks for heat within the water column at a given time, as well as illuminating 

movements of heat through the water column, both horizontally and vertically when spatial 
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data are sufficient. For temperate aquatic systems, shortwave radiative inputs are the 

driving force in the spring and early summer and the latent heat term is the dominant 

output beginning in late summer and into the fall, as the atmospheric boundary layer (ABL) 

becomes increasingly unstable with cooling air temperatures and warmer water 

temperatures (Blanken et al. 2011). A heat budget also summarizes the total heat exchange 

between the aquatic system and atmospheric forcing variables, with the sign of the flux 

indicating whether the lake is absorbing or releasing heat (an overall positive flux indicates 

heat is being absorbed, and a negative flux indicates heat is being released). Advection is 

calculated as the change in temperature unaccounted for by the air-sea heat flux and can be 

quite significant in some systems. 
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Chapter 2: Methods 

2.1 Equipment 
All observations were made during the months of June through October on monthly 

cruises in Green Bay at pre-determined stations which have been sampled in previous years 

(Fig. 2.1). High density, short term data sets collected during these cruises were 

supplemented by whole season moorings collecting data every 3 or 6 minutes from June or 

July through October, and a real-time coastal monitoring buoy collecting data every half 

hour. Thermal and light profiles were obtained through a combination of hand-lowered YSI 

(Dayton, OH) 6600 series Sondes equipped with temperature, fluorescence, turbidity, pH, 

  

Figure 2.1. Map of Green Bay with station locations indicated by the black circles. Coarse depth 
contours are indicated within the figure. 
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dissolved oxygen, and conductivity sensors and Onset (Bourne, MA) HOBO pendants during 

the cruises, and wire moorings that remained in the bay during our absence (Fig. 2.2). Wire 

moorings were equipped with HOBO temperature and HOBO pendant temperature/light 

data loggers (herein HOBO loggers and HOBO pendants, respectively) at varying distances 

from the bottom, depending on the depth of the site (Table 2.1), and YSI 6600 series Sondes 

equipped with similar sensors as mentioned above were moored 1m from the bottom at 

most sites. Stations equipped with HOBO loggers included Stations 8, 8-13, 9, 13, 13-19, 21, 

31, Chambers East (CE), and Chambers West (CW) (refer to Fig. 2.1 above for station 

locations). Stations 8, 8-13, 9, 13, 21, 31, CE, and CW were also equipped with HOBO 

pendants (Table 2.1). The mooring at Chambers West was snagged by a commercial fishing 

operation after approximately two weeks in the water. After retrieval, the mooring was 

redeployed but permanently lost after the second deployment. Some stations experienced  

Table 2.1. Station ID, depth of station (meters), and the location of sensors (S#) within the water 
column at each station. Sensor values are measured in meters from the bottom. A indicates within the 
vicinity of the bottom sediments; S indicates a sensor located on a float at the water surface. * 
indicates a temperature/light logger. 

 

  

 

 

 

 

 

 

 

 

Station 

ID 

Station 

Depth 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

8 8.3 A 1 2* 4.7 S      

8-13 9.7 A 0.5 1 2* 4* 6.5*     

9 9.1 A 1* 2 4* 5.5* S     

13 10.6 A 1 2* 4* 7*      

13-19 7.7 A 0.5 1 2 4      

21 15.8 A 1 2* 4* 7* 12* S    

31 23.9 A 1 2 3 5 8* 12* 16* 19* S 

CE 20.5 A 1 3 5* 8* 11* 16*    

CW 28.3 1 5 9 12* 15* 18* 21* S   
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Figure 2.2. Schematic of a typical mooring in Green Bay, with S# indicating sub-surface sensors 
within the water column, SA indicating the sensor attached to the top of the anchor (typically at or 
very close to the sediment-water interface), and Surface indicating the surface sensor, housed in a 
small, protective PVC pipe attached to the base of the spar buoy. 
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one or more HOBO logger failures during a portion of the field season. 

The HOBO pendants had an accuracy of ±0.53⁰C between temperatures of 0 and 

50⁰C. Light measurement accuracy was based on relative light levels, with a response curve 

peaking at 900nm (100% response), with 80% response rates occurring from 

approximately 680-1050nm and overall responses gathered between 150-1200nm at 

diminishing response rates from the spectral peak between 680 and 1050nm (Appendix A). 

Irradiance was measured in lumens foot-2 (lum ft-2). Sensor drift on an annual basis is less 

than 0.1⁰C. 

At Station 17, both a wire mooring, equipped with a bottom Sonde, and a CB-1500 

coastal monitoring buoy from Fondriest Environmental (Dayton, OH; herein buoy) were 

maintained (Fig. 2.3). The buoy was equipped with a Lufft WS501-UMB Compact Weather 

Station (Santa Barbara, CA) measuring temperature, relative humidity, global radiation 

(shortwave irradiance), air pressure, mean wind speed and direction (average wind speed 

 

Figure 2.3. Image of the Fondriest Environmental buoy. 
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over a 2 minute period), and wind gust speed, a YSI 6600 series multi-parameter sonde 

measuring temperature, fluorescence, turbidity, pH, dissolved oxygen, and conductivity, and 

a Nexsens (Dayton, OH) temperature string with thermistors every 1m from 2-12m. 

Measurements by the WS501-UMB were accurate for air temperature to ±0.2˚C 

within the conditions experienced. Relative humidity was measured in percent (%), with an 

accuracy of ±2%. Air pressure was measured in hectopascals (hPa, with 1 hPa=1mbar), with 

an accuracy of ±1.5hPa. Wind direction was measured from 0 to 360˚, with an accuracy of 

less than 3˚; however, compass accuracy on the Lufft is less than 10˚, which resulted in 

overall wind directional accuracy of ±13˚. Wind speed was measured as both mean and 

maximum (gust) wind speeds in meters second-1 (m s-1), with an accuracy of 3% or ±0.3m s-

1. Global radiation was measured across a spectral range of 310-2800nm in Watts meter-2 

(W m-2), with a resolution of < 1 W m-2 and a daily expected uncertainty of less than 10%. 

Thermal profiles were created for stations with moorings, as well as Station 17. 

Additionally, inter-annual variation was compared at Station 9 using data from 2011 (also 

collected using HOBO loggers). To more thoroughly compare these two years, climate 

rankings provided by the National Climatic Data Center (NCDC) were gathered. NCDC 

rankings are based on records from 1895 to the present year, with 1 being the coldest year 

on record, 118 (through 2012) being the warmest year on record, and maps being broken 

down by further rankings (Fig. 2.4). To simplify the rankings, we treated the coldest year on  

record as 0, the warmest year on record as 1, and determined the decimal rank for each 

month within each division by dividing by the number of years of record (119 for March 

and April, due to 2013 data being available, and 118 for the rest of the months). The value  

for each division was then averaged together by month and year to get an overall climate 

rank for the bay. 
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Figure 2.4. Example of the climate ranking maps provided by NCDC. 

2.2 Heat Budget 
Hydrodynamic processes within the Great Lakes are complex and are thoroughly 

described by Boyce (1974), Mortimer (2004), and others. The thermal structure and 

subsequent heat, or energy, budget for the Great Lakes can be sufficiently summarized  

through the following expression: 

QNET = QSW – QSW↑ + QLW – QLW↑ – QE – QH – QADV          (1) 

where QSW is the solar radiation (shortwave) incident upon the surface waters, QSW↑ is the 

solar radiation (shortwave) reflected at the surface waters, QLW is the longwave radiation 

incident upon the surface waters from the overlying atmosphere, QLW↑ is the longwave 

radiation emitted by the water body to the overlying atmosphere, QE is the latent heat loss, 
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or heat loss due to the evaporation of water, QH is the sensible heat loss (or gain) from the 

heat flux across the air-water interface, QADV is the total heat loss (or gain) from waters 

directly entering the water body (i.e. inflow from rivers, groundwater, precipitation and 

outflow from the water body), and QNET  is the total heat lost (or gained) during the 

observed period.  

The solar radiation incident upon the surface waters varies spatially and temporally 

(diurnal and seasonal), depending on the type of clouds and the total cloud cover (spatial 

and temporal-diurnal), as well as the time of year (temporal-seasonal) and the time of day 

(temporal-diurnal). Shortwave radiation was determined using data collected by the 

pyranometer atop the Lufft sensor on the buoy. While not necessarily representative of the 

entire bay, it was assumed for this study that solar irradiance, and thus cloud cover, was 

homogenous across the southern bay (the area of interest for this study). 

 The reflected solar radiation was determined by the expression: 

QSW↑ = αQSW     (2) 

where QSW↑ is the reflected solar radiation, α is the albedo, and QSW is the incident solar 

radiation obtained from the Lufft sensor on the buoy. A value of 0.08 determined by 

Schertzer (1978; 1987) for open water conditions on Lake Superior and Lake Erie was used 

for α. 

 Cloud cover determines the amount of longwave radiation received by the surface 

waters from the overlying atmosphere. The complexity of these processes is illuminated 

when considering the dynamics between shortwave and longwave radiation. Shortwave 

radiation, in effect, dictates the longwave radiation emitted by the water body, as the 

temperature of the water dictates the amount of longwave radiation emitted by the water 

body. Solar irradiance is the primary mode of heating of the surface waters and, in 

combination with wind speed, is the primary mode of cooling of surface waters (via latent 
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heat loss). However, warmer air (and a higher content of moisture therein) increases the 

incident longwave radiation (Lofgren and Zhu 2000). The result is typically no net effect on 

the energy budget between the competing processes of incoming and outgoing longwave 

radiation (Verburg and Antenucci 2010). 

 Incident longwave radiation is a function of the vapor pressure of the air, air 

temperature, and cloud cover. Under cloudless, or clear-sky, conditions, the incident 

longwave radiation was determined using the equation: 

QLW-CL = εclσ  
               (3) 

where εcl is the emissivity of the atmosphere under clear-sky conditions, σ is the Stefan-

Boltzmann constant (σ=5.67 x 10-8 W m-2 K-4), and Ta is the near-surface air temperature (in 

Kelvin). 

 The εcl is determined using an equation from Brutsaert (1982): 

        (
  

  
)
   

    (4) 

where ea is the vapor pressure of air. It should be noted that a value of 0.643, rather than 

the constant above of 1.24, provided by Kruk et al. (2010) was used initially. However, this 

constant resulted in unrealistic incoming longwave radiation estimates. Thus, Brutsaert’s 

constant, and equation, were used. 

Incident longwave radiation under cloud cover, and particularly all-sky conditions, 

relies upon a parameterization that is less certain than the aforementioned equations. While 

many parameterizations have been offered for different regions, parameterizations that use 

a cloud fraction term which is then multiplied by the clear-sky longwave radiation value are 

preferred. While a significant amount of research was done on the physical limnology of the 

Great Lakes in the 1950’s to 1990’s, more recent, enhanced parameterizations for large 

lakes are only available for sensible and latent heat terms, to the author’s knowledge. 

Longwave parameterization enhancements, while improving for terrestrial situations and 
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despite the high cost of longwave measuring instruments (pyrgeometers), have not been 

performed for the Great Lakes region (discounting satellite data which is insufficient for this 

study due to the frequency of data). While the parameterizations presented by Duarte et al. 

(2006) and supported by Kruk et al. (2010) are specific to terrestrial systems in southern 

Brazil and the constant provided by Kruk et al. (2010) was inaccurate for clear-sky 

longwave parameterizations, this parameterization primarily accounts for the constant 

present with cloud cover. Due to the in-depth analyses associated with the equations, the 

equation was deemed superior to previous parameterizations. Thus, the following 

expression from Duarte et al. (2006) was used: 

                                  (5) 

where c is the fraction of cloud cover from 0.05 to 1. Cloud fractions were determined using 

methods similar to those found in Crawford and Duchon (1999) and Duarte et al. (2006): 

    
       

       
      (6) 

where QSW OBS is the observed value of irradiance and QSW MAX is the maximum observed 

value of irradiance for the time period. This analysis differed from previous analyses by 

breaking down observations into one hour segments (for which two irradiance 

measurements were made), with maximum observed values for each hour being used as the 

denominator. These values were further broken down by a running maximum that 

considered values two weeks prior and two weeks after the observation to prevent the bias 

of changing seasonal solar values from significantly affecting the analysis. Hour periods for 

which sunrise/sunset were observed within were removed from subsequent months (e.g. 

the 6:00 hour was present in July analyses but not August, September, or October analyses). 

Sunrise/sunset times were based on observations (consistent 0 W∙m-2 values). Maximum 

observed irradiance values were used as opposed to theoretical irradiance values due to the 

fair certainty that clear sky conditions were observed at least once per four week period per 
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hour period (an assumption that is somewhat, but not entirely, verified by the data) and in 

an attempt to reduce parameterizations to the extent possible. 

 One issue with the above method for determining cloud cover is that only daytime 

values for irradiance are measured, and thus nighttime cloud cover cannot be determined. 

Others have used a linear relationship between the last observed cloud cover in the evening 

and the first cloud cover observation from the subsequent morning (Sridhar and Elliott 

2002; Duarte et al. 2006). However, this method carries with it considerable uncertainty, 

and the Austin-Straubel International Airport meteorological station, located approximately 

50 kilometers from the buoy, collected fractional cloud cover data. These cloud cover values 

were used when data from the buoy was missing (primarily overnight values). However, it 

did not supersede calculated cloud cover from irradiance data, as the cloud cover was only 

precise to five cloud fractions – 0, 0.125, 0.45, 0.75, 1.0 –  indicated by three-character 

strings (CLR, FEW, SCT, BKN, OVC, respectively) and rough averages of those values where 

more than one value was observed per hour (e.g. a listing of FEW, BKN, OVC). Three-digit 

numeric strings were attached to each character string, indicating the cloud base height (in 

feet, from the terrestrial surface); however, only cloud cover was considered for the 

longwave radiation calculation. 

 While some have ignored cloud fractions below 0.3 and labeled them as clear-sky 

(Reed 1976; Beardsley et al. 1998), the author followed protocol by Kruk et al. (2010) and 

used a fraction of 0.05 as the threshold value for clear-sky conditions. This agrees with the 

supplementary cloud data provided by NCDC, as the first cloud term, FEW, corresponds to 

0/8-2/8 (average of 0.125) of the sky being covered in clouds. Under the 0.3 threshold, 

these cloud values would be wrongly assumed to be clear sky. 

The latent and sensible heat flux, QE and QH, respectively, were calculated using the 

measured variables air temperature (Ta, ˚C), water surface temperature (Ts, ˚C), relative 
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humidity (RH, %), wind speed (Uz, m s-1), and air pressure (P, hPa) and the bulk 

aerodynamic methods from Verburg and Antenucci (2010): 

QE = paLvCEUz(qs-qz)             (7) 

QH = paCaCHUz(Ts-Ta)             (8) 

where CE  and CH are the transfer coefficients for latent and sensible heat, respectively, Ca is 

the specific heat of air (1005 J kg-1 K-1) and 

   
    

             
            air density, kg m-3 (9) 

                           gas constant for moist air, J kg K-1 (10) 

                      latent heat of vaporization, J kg-1 (11) 

   
         

 
         specific humidity at saturation, kg kg-1 (12) 

   
       

 
           specific humidity, kg kg-1 (13) 

             
 

       
          

 
       saturated vapor pressure at Ts, hPa (14) 

   
    

   
                  vapor pressure, hPa (15) 

           
 

       
          

 
    saturated vapor pressure at Ta, hPa (16) 

Total evaporation (E*) from the surface waters to the overlying atmosphere during 

the observed period can be estimated as 

   
  

    
 , m s-1              (17) 

Water density (pw , in kg m-3) is given by Henderson-Sellers (1986) 

                     |       |           (18) 

The transfer coefficients for latent and sensible heat were assumed to be the same 

(Zeng et al. 1998). While the ideal method for determining the bulk aerodynamic transfer 

coefficient is to measure the necessary variables at two heights and to then parameterize 

the turbulent flux from this data, the buoy used only had one meteorological station at a 
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1.5m height above the water surface. There are several methods to determine the value of 

the transfer coefficient without calculating turbulent flux directly. Verburg and Antenucci 

(2010) offer a method that involves multiple iterations, starting with values for air shear 

velocity and roughness lengths (momentum and vapor) under neutral conditions. The 

Matlab code written by Verburg and Antenucci (2010) and used in their analyses of latent 

and sensible heat fluxes over Lake Tanganyika was translated into the program R and run 

with the appropriate input data (Appendix B). 

Advection terms for each station were calculated based upon the net heat flux 

calculated for Station 17. Advection was calculated using the equation 

             

where Qadv is the advection term and dƟ is the change in temperature of the water column. 

The mean temperature of the water column for a given day was calculated using the mean 

water temperature of the water column at each sample point between all functioning 

thermistors at the site. This value was then converted into W∙m-2 by multiplying the heat 

storage term, Ɵ, by the specific heat of water, the density of water, the depth of the site, and 

the number of seconds in a day. dƟ was then calculated using the equation 

         

where Ɵ2 is the daily heat storage term (W∙m-2) subsequent to Ɵ1. Due to sign conventions 

when calculating the net flux, dƟ is assigned a negative value in the equation for calculating 

advection. 

2.3 Light Extinction 
Light extinction (or attenuation) coefficients (kd) were determined from monthly 

profiles using a HOBO pendant. Profiles were conducted at various sites from July through 

September throughout the bay, with 4 common sites for each month and a maximum of 17 
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sites and a minimum of 10 sites in one month (August and September, respectively). Kd 

values are calculated using the general equation 

                     (19) 

where z is the depth, Iz is the observed irradiance at depth, Io is the surface observed 

irradiance, and kd is the light extinction coefficient. With this general equation in mind, kd 

values were determined by plotting the depth versus the natural log (ln) of the irradiance 

values. The negative slope of the linear regression of the plotted data is the value of kd for 

that particular site. 

Processing the profile data was relatively complex when considering: 1) the HOBO 

pendants are not equipped with depth sensors and 2) considering the response of the HOBO 

pendants to light levels. The HOBO pendants were lowered with an YSI 6600 series multi-

parameter sonde, at an exact height of 0.47m above the depth sensor of the sonde. The 

internal times of each instrument were calibrated using the same laptop, with an expected 

accuracy of <2 seconds (the coined “click-time uncertainty”). This expected accuracy 

corresponded well with the first irradiance reading by the HOBO pendant across data sets. 

Irradiance values were recorded every one second during the profile by the HOBO pendant, 

and depth (and other parameter) values were recorded every two seconds by the sonde. 

The HOBO pendant data were fitted with corresponding and interpolated depth values from 

the sonde using a custom script in the program R (Appendix C). Near-surface values were 

considered for the calculation of kd. 

 When considering HOBO pendant response to light levels, it was acknowledged that 

the peak response by the instrument occurred within the light range that is expected to 

extinguish the fastest in surface waters (red and near infrared, 600-1000nm) (Kirk 1994; 

Effler et al. 2010). When analyzing the irradiance profiles, it was noted that many with 

relatively uniform data reflected a steeper slope (LEC) in the first 1-2m than for the rest of 
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the profile. This could be considered as a more turbid surface layer, likely due to algal 

biomass, as turbid waters attenuate greater in the range for which the sensor is less 

sensitive. However, considering the response of the sensor to light levels, the strength of 

this trend, and the inaccuracies associated with it, there was uncertainty that this was an 

artifact of the HOBO pendant response to light levels, and not an observation of increased 

turbidity in surface waters. Once below this surface layer, however, the kd value is expected 

to be accurate, as the HOBO pendant responses are much more consistent beyond the 

surface region across profiles and the light which the sensor is most sensitive to is 

significantly diminished past 1-3m and rapidly extinguished thereafter (Kirk 1994). 

 By determining kd, an optical depth can be determined for the water column. 

Typically, optical depths of 10 and 1% of surface irradiance are of interest. An optical depth 

of 10% corresponds to the mid-point of the photic zone and an optical depth of 1% 

corresponds to the depth at which light becomes limiting for photosynthesis (photic depth). 

Optical depth is calculated by 

               (21) 

where ζ is the optical depth and z is the depth of interest. To determine the depth at which ζ 

is equal to 10 % and 1%, ζ  is set equal to 2.3 and 4.6, respectively (Kirk 1994). 

 When the optical depth for 1% is calculated, the volume of water within which 

phytoplankton can photosynthesize at a particular point in the bay can be calculated. The 

amount of energy required to fix one molecule of carbon into one molecule of carbohydrate 

can be calculated, using the chemical reaction 

          
    
→                  (Kirk 1994)   (22) 

if the frequency of light is known. The expression 

            (23) 
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where E is energy (Joules), h is Planck’s constant (6.63 x 10-34 J s-1), and v is the frequency of 

the monochromatic light when converting between energy and frequency accounts for the 

frequency of light when considering the energetics of a monochromatic wavelength. 

Monochromatic light data were not available, but the spectral range, in wavelength, is 

known. Using the equation 

  
  

 
                      (24) 

where c is the speed of light constant (3 x 108 m s-1) and λ is the wavelength of light 

(converted from nm to m), the energy used to photosynthesize one molecule of carbon can 

be calculated using the wavelength of light. The average wavelength of light used by 

phytoplankton can be approximated by taking the mid-point of the spectral range, 400-

700nm, or the average between the two spectral peaks within chlorophyll-a, 430nm and 

670nm, both of which result in a value of 550nm. While chlorophyll-a does not absorb 

consistently between these two peaks, this is a rough method. When using a wavelength of 

550nm, the equation to calculate energy use for photosynthesis is 

  
   

 
                   (25) 

where 8 is the approximate multiplier when using Equation (22) from Kirk (1994). Using 

this value over the photic depth allows for a rough calculation of the amount of light energy 

within the water column that is converted to biochemical, rather than heat, energy by 

following the procedure outlined in Appendix D. While different algal groups display 

varying degrees of photosynthetic efficiencies depending on the environment and 

physiological characteristics, the method was deemed adequate for a rough estimate of the 

algal energetic “sink” within the context of a heat budget. 

2.4 Short Term Analyses and Diel Warming Trends 
Periods of several days to a few weeks were plotted to look more closely at trends. 

Thermal profile data were visually observed and compared to meteorological forcing 
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variables and flux terms over the same period to better account for the behavior observed 

within the water column. Bottom water temperatures were plotted for specific periods over 

the season, determined by looking at a season long plot of bottom temperatures, to better 

understand the behavior of cold water intrusions in the lower bay and to look for a 

consistent pathway in this distinct water mass. 

Additionally, to determine the effect of water clarity on radiant heat absorption by 

the water column, the difference between the maximum and minimum surface temperature 

was calculated for applicable stations over the study period. These values were also 

compared to meteorological forcing variables and flux terms over specific periods in an 

attempt to determine the cause of particular trends. Sub-surface values were also 

considered using the HOBO logger at the sub-surface float, typically 3-4 meters below the 

surface of the water. A similar process as described for the surface temperature data was 

used on this data set. 

Finally, bottom water temperatures were tracked across moorings to determine the 

pathway of cold water intrusions into southern Green Bay. Minimum temperatures at each 

station as well as the time at which stations encountered the same cool temperature 

(treated as the warmest minimum temperature across stations) were used to determine the 

pathway of the cool water masses. 
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Chapter 3: Results 

3.1 Mooring & Buoy Temperature Profiles 
Contour plots of temperature over depth and time were plotted using Surfer 9 (Fig. 

3.1a-j). The Kriging method was used for interpolation with approximately 30-minute 

spacing used for the horizontal axis and 0.5m spacing used for the vertical axis, except 

Chambers Island West which utilized 0.25m spacing due to a smaller set of data (Fig. 3.1j). 

Intrusions of cold water from northern Green Bay, and presumably Lake Michigan proper, 

were evident in all temperature profile plots throughout the study period (Fig. 3.1a-j). For 

shallow, southerly sites, these intrusions represented the only periods of defined 

thermocline formation for the entire summer (Fig. 3.1a-f). As sites became deeper and 

displayed season-long, semi-stable thermoclines, such as Station 31 (Fig. 3.1i), intrusions 

resulted in a thicker hypolimnetic layer for much of the study period. Large thermocline 

oscillations at sites with stable thermoclines were temporally correlated with cold-water 

intrusions into shallow southerly sites when visually inspecting the data. Surface waters 

remained near 25˚C (or warmer) until Julian day 220 (August 7), at which point surface 

waters began to gradually cool. Full water column mixing, resulting in isothermal 

conditions, began at all sites (excluding Station 13-19, depth=7.7m) from Julian days 260-

270 (September 26), with 15˚C isothermal conditions occurring at all sites on Julian day 

279. Specific periods throughout the summer are examined in more detail for select sites in 

Section 3.6. 

 To better determine how 2012 thermal profiles compare to previous years, data 

from Station 9 were compared between years 2011 and 2012. When considering data from 

the NCDC, divisional climate ranks were determined for three of the four divisions that 

share coastline with Green Bay (the fourth division in the Upper Peninsula of Michigan was 

not considered as it shares only a small amount of coastline with Green Bay and is west of 
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Figure 3.1a-c. Horizontal axis is Julian day, vertical 
axis is depth in meters, with 0 equal to the surface. 
Depth for each site is a season average. Color contours 
are based on the color legend, with temperatures in 
˚C. The 15˚C isotherm is marked as the black line. a) 
Station 8, depth =8.3m b) Station 8-13, depth = 9.7m 
c) Station 9, depth = 9.1m 
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Figure 3.1d-f. Horizontal axis is Julian day, vertical 
axis is depth in meters, with 0 equal to the surface. 
Depth for each site is a season average. Color 
contours are based on the color legend, with 
temperatures in ˚C. The 15˚C isotherm is marked as 
the black line. d) Station 13, depth =10.6m e) Station 
13-19, depth = 7.7m f) Station 17, depth = 13m  
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Figure 3.1g-i. Horizontal axis is Julian day, vertical 
axis is depth in meters, with 0 equal to the surface. 
Depth for each site is a season average. Color 
contours are based on the color legend, with 
temperatures in ˚C. The 15˚C isotherm is marked as 
the black line. g) Station 21, depth =15.8m h) 
Station 31, depth = 23.9m i) Chambers Island East, 
depth = 20.5m 

 

East 



34 
 

 

 

 

 

 

 

the majority of the bay). Ranks for the spring and summer periods of these two years 

indicated that 2012 had a much warmer spring and that 2011 displayed a warmer summer 

overall, with 2012 exhibiting a warmer July (Table 3.1). 

Table 3.1. Summary of monthly climate rankings, taken as an average of monthly rankings from each 
of three divisions sharing coastline with Green Bay. 

Year March April May June Spring 

Avg. 

July August Summer 

Avg. 

September 

2011 0.50 0.35 0.31 0.31 0.40 0.91 0.74 0.82 0.37 

2012 1 0.65 0.88 0.86 0.80 0.96 0.55 0.75 0.29 

 

While data for 2012 did not begin until the end of June, comparing the two years 

indicates that 2012 was slightly advanced in its warming in comparison by an estimated 5-

10 days (Fig. 3.2). More significantly, the water column at Station 9 in 2012 maintained 

warmer temperatures into the fall, reaching similar isothermal conditions approximately 

two weeks later than in 2011. This is likely due to the warmer overall temperatures 

throughout the summer and the enhanced entrapment of heat throughout the water column 

which had remained well-mixed throughout the summer of 2012, which also contrasts the  

j 
z
 (

m
) 

˚C 

Figure 3.1j. Horizontal axis is Julian day, vertical axis is depth 
in meters, with 0 equal to the surface. Depth for each site is a 
season average. Color contours are based on the color legend, 
with temperatures in ˚C. The 15˚C isotherm is marked as the 
black line. j) Chambers Island West, depth =28.3m 
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2011 season where cooler waters were observed for much of the study period. These 

findings agree well with the findings in the THERMOS experiment conducted in Lake 

Breisjøen, southern Norway (Lydersen et al. 2008). 

3.2 Heat Flux 
The overall heat flux was calculated as daily averages from the sum of total 

shortwave and longwave radiation inputs and outputs and the sensible and latent flux 

terms (Fig. 3.3). Advection through precipitation was considered non-influential, especially 

considering the abnormally dry summer experienced over much of the bay in 2012. Thus, 

the advection term was considered as representing the movement of thermally distinct 

water masses within the bay. This assumption was supported by correlated trends between 

the arrival of cold water masses across the sites and a strongly negative advection term 

within the same period (Fig. 3.4a-i). 

As expected, net shortwave radiation (the sum of irradiance and reflectance, with 

irradiance being positive and reflectance being negative) was always positive, with a high of 

approximately 700 W∙m-2day-1, but more typically fluctuating around 200 W∙m-2day-1. Net 

longwave radiation (the sum of atmospheric inputs considering cloud cover and emissions 

by water, assuming an emissivity of 0.97) was essentially zero throughout the season, with 

fluctuations of ±25 W∙m-2day-1 common, primarily due to cloud cover. Sensible heat flux was 

small throughout the study period, fluctuating between positive and negative values that 

rarely exceeded ±100 W∙m-2day-1. Latent heat flux was negative for nearly all of the study 

period with peak values approaching -400 W∙m-2day-1. Net heat flux was typically positive 

until the end of August, when it became primarily negative. There were many periods of 

fluctuating values, primarily due to variance in incoming shortwave radiation, varying rates 

of evaporation, and unstable water column temperatures due to the large advection terms. 

The advection of distinct water masses throughout the bay resulted in occasional
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Figure 3.4a. Daily average advected heat for Station 8 (red) and net air-sea heat flux (daily average) 
calculated for Station 17 (black). 
 
 
 

 
Figure 3.4b. Daily average advected heat for Station 8-13 (red) and net air-sea heat flux (daily 
average) calculated for Station 17 (black).  
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Figure 3.4c. Daily average advected heat for Station 9 (red) and net air-sea heat flux (daily average) 
calculated for Station 17 (black). 
 
 
 

 
Figure 3.4d. Daily average advected heat for Station 13 (red) and net air-sea heat flux (daily 
average) calculated for Station 17 (black). 
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Figure 3.4e. Daily average advected heat for Station 13-19 (red) and net air-sea heat flux (daily 
average) calculated for Station 17 (black). 

 
 
 

 
Figure 3.4f. Daily average advected heat for Station 17 (red) and net air-sea heat flux (daily average) 
calculated for Station 17 (black). 
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Figure 3.4g. Daily average advected heat for Station 21 (red) and net air-sea heat flux (daily average) 
calculated for Station 17 (black). 
 
 
 

 
Figure 3.4h. Daily average advected heat for Station 31 (red) and net air-sea heat flux (daily 
average) calculated for Station 17 (black). 
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Figure 3.4i. Daily average advected heat for Chambers East (red) and net air-sea heat flux (daily 
average) calculated for Station 17 (black). 

 
disconnects between water column temperatures and the net heat flux across the air-water 

interface. As expected, shortwave radiation was the primary driver of the heat flux early in 

the season, with its effect diminishing through the season, and latent heat flux became the 

dominant flux term as the year progressed. 

3.3 Light Extinction Coefficients 
Kd was calculated for each HOBO pendant profile conducted on monthly cruises (Fig. 

3.5-3.7; Table 3.2). In general, light extinction coefficients were larger for shallow, southerly 

sites and smaller for deeper, northerly sites (Fig. 3.8). This trend agrees well with known 

attributes of Green Bay, notably the trophic gradient from hypereutrophic at the mouth of 

the Lower Fox River to mesotrophic north of Chambers Island, where waters mix more 

readily with Lake Michigan (Kennedy 1982; Miller and Saylor 1985; others). Occasional 

profiles exhibited curious behavior, particularly in the upper 1 to 2 meters (Fig. 3.6k). Some 

researchers have disregarded the top 1 meter due to highly variable data; however, this is 

the most influential layer for eutrophic waters. While some profiles, such as Figure 3.7a  
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Figure 3.5a-k. July light extinction 
coefficients for stations throughout lower 
Green Bay. Horizontal axis is depth in 
meters, vertical axis is the natural log (ln) 
of irradiance. Resultant slope is the light 
extinction coefficient for the station. 
a) Entrance Light b) Station 5 c) Station 8  
d) Station 8-13 e) Station 9 f) Station 12  
g) Station 13 h) Station 21 i) Station 31 
 j) Chambers Island East k) Chambers 
Island West. 
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m n 

o p 

q 
Figure 3.6a-q. August light extinction 
coefficients for stations throughout lower 
Green Bay. Horizontal axis is depth in 
meters, vertical axis is the natural log (ln) 
of irradiance. Resultant slope is the light 
extinction coefficient for the station.  
a) Station 5 b) Station 8 c) Station 8-13  
d) Station 10 e) Station 11 f) Station 12  
g) Station 13-19 h) Station 20 i) Station 21 
j) Station 22 k) Station 26 l) Station 32  
m) Station 38 n) Station 39 o) Station 42 
p) Station 43 q) Station 47. 
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(Station 8), indicate potential sensor irregularity (abnormal lag) due to irradiance values 

holding through the top two meters, the same sensor was used for all profiles and the rapid 

drop off in irradiance through the next few meters suggest that the overall trend line is 

reflective of light attenuation through the whole water column, on average. 

Conversely, the sole profile for Chambers Island West (Fig. 3.5k) indicates two 

g h 

i j 

Figure 3.7a-j. September light extinction coefficients for stations throughout lower Green Bay. 
Horizontal axis is depth in meters, vertical axis is the natural log (ln) of irradiance. Resultant 
slope is the light extinction coefficient for the station. a) Station 8 b) Station 8-13 c) Station 9  
d) Station 12 e) Station 13 f) Station 17 g) Station 21 h) Station 26 i) Station 31 j) Station 32. 
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Figure 3.8a-c. Kd for all sampled stations by month. Red points are individual data points from 
stations south of Sturgeon Bay with red lines indicating the kd value for individual stations south of 
Sturgeon Bay. Blue points are individual data points from stations north of Sturgeon Bay with blue 
lines indicating the kd value for individual stations north of Sturgeon Bay.  
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Table 3.2. Light extinction coefficients from profiled stations in July, August, and September. “–“ 
indicates the station was not sampled that month. 

Station July LEC August LEC September LEC 
Entrance Light 1.087     

5 1.129 0.9364   
8 0.904 0.6889 1.492 

8-13 0.7454 0.7185 1.379 
9 1.305   1.315 

10   0.8321   
11   0.8302   
12 0.6773 1.010 1.105 
13 0.8127   0.9315 

13-19   0.7142   
17     0.9161 
20   0.8743   
21 0.5705 0.2207 0.5907 
22   0.3884   
26   0.6062 0.3448 
31 0.6009   0.5274 
32   0.5555 0.6179 
38   0.4287   
39   0.3114   
42   0.4376   
43   0.3834   
47   0.4848   

Chambers Island East 0.4914     
Chambers Island West 0.4673/0.1461     

 
distinct slopes, with the top five meters of the water column significantly more turbid than 

the remainder of the water column (kd of 0.4673 and 0.1461, respectively). This suggests 

that the water mass between the surface and five meters is lower Green Bay water with 

either higher particulate content and/or higher nutrient levels, an observation that is 

supported by current meter data from previous years (Hamidi et al., in prep).  However, 

hypolimnetic Lake Michigan water intrudes via cold water intrusions. While this water is 

expected to be much lower in both turbidity and nutrient content, it is also located below 

the thermocline and near the boundary of the photic zone at this site. Further investigation 

of both the western Chambers Island channel and the bay north of Chambers Island is 

necessary to elucidate these preliminary findings. 
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After plotting kd values from profile data using a Kriging interpolation of the bay, 

two trends were noticed (Fig. 3.9a-c). The first trend was that, for stations with profiles 

taken every month, kd tended to be highest in September, with most of these sites exhibiting 

lower kd in August than in July. While only a few sites were consistently profiled on each 

cruise due to time limits with other cruise activities, time of day at the station and 

occasional sensor failure (e.g. data transfer to computer failed), the spatial coverage of the 

bay and the proximity of sites sampled provides considerable support for spatial and 

temporal trends, namely that southern bay sites exhibited kd values that were much higher 

than northern sites. Higher kd values in September were attributed to full water column 

mixing throughout the bay during the September cruise (Julian days 256-257), which is 

supported by the near isothermal and weakly stratified thermal profile data from this 

period. These mixing events are known to cause significant resuspension of bottom 

sediments (Klump et al. 2009). The second trend was that kd trended higher within the 

region that previous studies have shown is the Lower Fox River plume and depositional 

zone (Kennedy 1982; Lathrop et al. 1990; Hamidi et al., in prep) (Fig. 3.9b). 

3.4 Optical Depth 
Optical depths were calculated for each sampled station for the months of July, August, and 

September (Table 3.3). Optical depth is essentially a reflection of kd, but is a more pragmatic 

way of visualizing the photic depth, or depth at which the amount of visible light is no 

longer conducive for primary productivity. Optical depth corresponds to different depths in 

the water column but represents the same diminution of the light between different water 

bodies or regions within the same water body. Typically, two optical depths are of concern: 

the 10% and 1% optical depths, with the former corresponding to the mid- point of the 

photic zone and the latter synonymous with the photic depth (Kirk 1994). The photic depth 

indicates the depth in the water column in which gross primary productivity and 



53 
 

 

Figure 3.9a. July light extinction coefficients for profiled stations, taken from July 24-26. Data 
interpolated and extrapolated using the Kriging method. 
 

respiration are equal. The photic depth can also be used as a tool to suggest which genera of 

phytoplankton one can reasonably expect within the water column. In waters with a small 

photic depth, phytoplankton genera that are more adept at maintaining their position 

within the water column, such as cyanobacteria, can be expected (Graham et al. 2009). This, 

in turn, further suggests what the ecosystem status of the waters are for that  
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Figure 3.9b. August light extinction coefficients for profiled stations, taken from August 21-23. Data 
interpolated and extrapolated using the Kriging method. 
 

region. However, sampling of the water is required to ascertain which phytoplankton 

genera are actually present. 

3.5 Primary Productivity and Solar Irradiance 
Primary productivity estimates for the lower bay were produced from light-dark bottle 

experiments conducted on cruises over the study period with water taken from Station 17 

at a depth of 4m. Productivity was taken as the concentration of oxygen after the incubation   
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Figure 3.9c. September light extinction coefficients for profiled stations, taken from September11-
13. Data interpolated and extrapolated using the Kriging method. 
 

period minus the initial concentration of oxygen. Varying levels of shading (using screen 

wrapped around the incubating bottles at levels of no wraps, two wraps, and four wraps) 

were used to produce different light levels resulting in approximately 70% and 90% 

reductions in incident irradiance (Appendix D). Clear bottles indicated photoinhibition and 

reduced productivity rates, while the bottles with shading produced productivity rates that  
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Table 3.3. Optical depth (OD) in meters for sampled stations, with 1% OD synonymous with photic 
depth. “–“ indicates the station was not sampled that month. 

 

were assumed to be more accurate for the aquatic environment, especially when compared 

to values found for the clear and dark bottles (Appendix D). These values were also within 

the bounds described for Green Bay by Sager et al. (1984). 

Using these productivity values as estimates of the amount of light energy converted 

to biochemical energy and unavailable for heat transfer into the water column, the 

significance of algal absorbance of incoming solar irradiance on the overall heat budget was 

estimated. Considering that the purpose of this calculation was to determine the extent to 

which primary productivity “steals” heat from the net heat budget (the heat budget assumes 

Station July 
10% O.D. 

July 
1% O.D. 

August 
10% O.D. 

August 
1% O.D. 

September 
10% O.D. 

September 
1% O.D. 

EL 2.1 4.2         

5 2.0 4.1 2.5 4.9     

8_13 3.1 6.2 3.2 6.4 1.7 3.3 

8 2.5 5.1 3.3 6.7 1.5 3.1 

9 1.8 3.5     1.7 3.5 

10     2.8 5.5     

11     2.8 5.5     

12 3.4 6.8 2.1 4.2 2.1 4.2 

13 2.8 5.7     2.5 4.9 

13_19     3.2 6.4     

17         2.5 5.0 

20     2.6 5.3     

21 4.0 8.1 10.4 20.8 3.9 7.8 

22     5.9 11.8     

26     3.8 7.6 6.7 13.3 

31 3.8 7.7     4.4 8.7 

32     4.1 8.3 3.7 7.4 

38     5.4 10.7     

39     7.4 14.8     

42     5.3 10.5     

43     6.0 12.0     

47     4.7 9.5     

CE 4.7 9.4         

CW 10.7 21.4         
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that all incident solar irradiance that is not reflected is converted to heat energy within the 

water column), rough values were used to approach the subject on a magnitude scale as it 

was assumed that the overall value would be small in comparison to the total solar 

irradiance absorbed by the abiotic components of the water column. Thus, an average 

photic depth of 6 meters was assumed for the region south of Chambers Island due to 

inconsistency of sampled stations between months. 

 The primary productivity for the bay was estimated at 375-1200 mg C∙m-3day-1, 

which falls within the volumetric-based range described by Sager et al. of 7-1382 mg C∙m-

3day-1 for the whole bay (1984). Considering this value converted into mol C∙m-3day-1 (0.031 

–0.100) and multiplied by the energy (in W) incident upon the bay within the wavelengths 

of 400-700nm results in an estimate of 0.63-3.15 W∙m-3. Considering an average photic 

depth of 6 meters results in a range of values between 3.78-12.08 W∙m-2 within the photic 

zone of the bay (the upper 6m of the bay) (Appendix D). These values are, on average, an 

order of magnitude less than the incident solar irradiance that is absorbed by the bay. Thus, 

while the values are not small, they are also not significant. 

3.6 Short Term Analyses 
Diel cycles, and thus short-term heating and cooling trends, can be garnered from 

short term analyses of mooring data. Coupled with meteorological data for the period and 

flux terms, a better understanding of the driving forces in the heating, cooling, and 

distribution of different water masses within the water column can be ascertained. 

Temperature plots were produced using the Kriging method of interpolation. 

 Solar heating of the upper few meters of the water column was evident in all 

moorings where surface water temperature data were available. The depth of heating and 

magnitude of heating was noticeably different between stations of varying depths, which 

also corresponds to an extent with general trends in water clarity seen earlier (i.e. southerly 
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stations have more surface warming than northern stations, but there is significant 

variability amongst southern stations). Stations with a greater depth are farther north, and 

thus tend to have clearer waters. It is very evident across stations that there is nightly 

cooling of surface waters, with surface waters cooling much more after days of high solar 

irradiance (typically clear sky or partly cloudy days). It is also quite noticeable that overcast 

days experience reduced diel heating of surface waters, a feature that is again consistent 

across stations. Diel heating of the surface waters extends to a depth of approximately two 

meters below the surface at shallow stations (Station 8 and 9 considered here), and to a 

depth typically of 6-8 meters, but occasionally only 4 meters, at Station 31 (based on 

interpolated data). The variance is due to incident solar irradiance and depth of near 

isothermal conditions (the depth of the mixed layer, here considered the layer where 

thermal stratification is weak enough to be overcome by convective and wind mixing). 

Surface heating is considered across a temperature range of 1˚C, where the bottom of the 

surface heating is considered the depth at which the water temperature is 1˚C cooler than 

surface water temperatures. 

 The diel signal is most evident during periods of high solar irradiance (clear sky or 

partly cloudy conditions). However, warm air temperatures appear to suppress the extent 

of heat flux across the air-sea interface, resulting in exaggerated diel signals in the upper 

meter during days with high solar irradiance, high air temperatures, and minimal wind. 

 Diverse meteorlogical conditions were present between Julian day 197-203, 

resulting in significant changes within the water column (Fig. 3.10a-g). Station 8-13 

illustrates the conditions required for full water column mixing over the period Julian day 

197-203 (Fig. 3.10f). A cold water mass appears at the site around Julian day 200, during a 

period of moderately strong mean winds (>6 m∙s-1, intermittently with occasional mean 

winds above 8 m∙s-1) (Fig. 3.10c). Julian day 201 was overcast, with no diel warming signal. 
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This period also coincided with increased mean wind speeds above 10 m∙s-1. This wind 

period proved strong enough to mix the cool bottom waters with the warmer overlying 

waters. In days prior to the cold water intrusion, diel warming of surface waters led to 

temperatures exceeding 26˚C, with peak temperatures of 27˚C. The intruding cold bottom 

waters had temperatures near 14˚C. During the intrusion, and likely due to the moderately 

strong mean wind speeds (Fig. 3.10c), only a small diel signal was seen on Julian day 200 

(Fig. 3.10f). It is not clear whether the reduced diel warming signal is due to entrainment of 

cool bottom waters into the mixed layer or due to increased flux to the atmosphere due to 

moderately strong mean wind speeds, as air temperatures were cooler than surface water 

temperatures over this period (up to 1.5˚C cooler) (Fig. 3.10a). However, upon inspecting 

the depth-time temperature profile for Station 21 over this period, it is suspected that an 

emphasis should be placed on entrainment of cold waters, as the entire water column 

becomes significantly cooler at this period than it was in previous days (Fig. 3.10g). 

During clear sky periods with high winds (above 8 m∙s-1 or persistent winds above 5 

m∙s-1), surface heating is extended beyond the previously mentioned range, with surface

 

Figure 3.10a. Air temperature from the buoy meteorological station from July 15-20, 2012.  
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Figure 3.10b. Solar irradiance from the buoy meteorological station from July 15-20, 2012. 
 

 
Figure 3.10c. Mean wind speed from the buoy meteorological station from July 15-20, 2012. 
 

temperatures still heating more than underlying waters but to a lesser extent (Fig. 3.11a-j). 

Station 31, between noon on Julian day 228 and midnight on Julian day 229, experienced 

such conditions (Fig. 3.11j). The surface waters heated with a fairly typical diel signal, but 

mixing of the water column extended the base of the heated water mass two meters deeper, 

to a depth of approximately ten meters from the surface. Conditions during Julian day 229 

were such that full mixing of the epilimnion occurred and no diel warming was seen. 
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Figure 3.10d. Latent heat flux from July 15-20, 2012. 

 

Figure 3.10e. Sensible heat flux from July 15-20, 2012. 
 

Cooling of the surface waters overnight occurred, largely attributed to the significant drop 

in air temperatures to 16˚C in the early morning hours of Julian day 230 (Fig. 3.11a). Julian 

day 230 had a daytime high of 22˚ C, over 2˚C cooler than Julian day 228 (Fig. 3.11a). Julian 

day 230 experienced a small diel warming signal (approximately 0.5˚ C as opposed to the 
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Figure 3.10f. Depth-time temperature plot for Station 8 from July 15-20, 2012.  

 

 

Figure 3.10g. Depth-time temperature plot for Station 21 from July 15-20, 2012.  
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typical warming of 1.5˚C) (Fig. 3.11j). It was hard to determine the primary cause of this, as 

the daytime air temperatures were much cooler, which could allow for increased heat 

exchange at the air-sea interface and a smaller diel warming signal. However, full mixing of 

the water column during a period of cool water intrusions and a shallower thermocline 

depth also suggest that this could significantly impact the diel warming signal. Analysis of 

other periods with a cooling of air temperatures but no cold water intrusions is required to 

better determine the cause. 

 Julian days 215-220 at Station 9 did not show any signs of a cold water intrusion 

(Fig. 3.11g). However, diel warming signals were quite variable, with water at depth 

warming to a similar extent as the surface waters during periods of high mean wind speeds 

(Fig. 3.11c). This period experienced high solar irradiance (the entire stretch of days 

included primarily clear sky conditions) (Fig. 3.11b). A decrease in daytime air 

temperatures occurred on Julian day 218, with a gradual increase each day after (initial 

drop in temperature of nearly 3˚C) (Fig. 3.11a). Mean wind speeds were above 6 m∙s-1, with 

occasional speeds above 8 m∙s-1, for much of the period between Julian day 218 and Julian 

day 220 (Fig. 3.11c). During this period, a warm layer of water occurred approximately four 

meters below the surface (generally 0.5˚C warmer than surface water temperatures), with 

waters nearly isothermal but cooler below this layer (Fig. 3.11g). This is near the accuracy 

of the HOBO loggers used and thus may not be representative of what is actually happening, 

as Station 8-13 did not exhibit a subsurface warm water mass (Fig. 3.11f). 

 Station 31 showed similar trends over the same period (Julian day 215-231) (Fig. 

3.11j). It is evident that the cold water intrusion reached Station 31 prior to Station 9 by a 

few days, with Julian day 218 showing cooling of the surface layer and the entrainment of 

cooler, hypolimnetic waters into the mixed layer, likely due to convective mixing. Julian  
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Figure 3.11a. Air temperature from the buoy meteorological station from August 2-17, 2012. 

 

 
Figure 3.11b. Solar irradiance from the buoy meteorological station from August 2-17, 2012. 

 
days 215-220 showed stable stratification at Station 21, with cold hypolimnetic waters and 

significant diel heating of the surface waters (>1.5˚C) (Fig. 3.11i). There was evidence of 

entrainment of hypolimnetic waters into the mixed layer on Julian days 223 to 224. The 

period at the end of the diel warming signal and the beginning of the cooling of surface 

waters consistently displayed a correlation with a peak in latent heat flux (Fig. 3.11d). 

These peaks in latent heat flux were generally short lived, likely coupled with the period  
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Figure 3.11c. Mean wind speed from the buoy meteorological station from August 2-17, 2012. 

 

 
Figure 3.11d. Latent heat flux from August 2-17, 2012.  
 
where heat gained during the day is rapidly lost to the atmosphere via evaporation. As seen 

with mixing of the water column, these processes tend to occur within an hour window, 

with the peak in latent heat flux corresponding to a typical drop in surface water 

temperature of 1˚C within the half-hour period, with the half-hour period generally around 

21:00. Maximum surface temperatures typically occurred around 18:00 at shallow stations,  
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Figure 3.11e. Sensible heat flux from August 2-17, 2012. 
 

 

Figure 3.11f. Depth-time temperature plot for Station 8-13 from August 2-17, 2012.  

 

with drops of 3˚C seen in 3.5 hour periods (e.g. Station 8, Julian day 240). Deeper stations 

(e.g. Station 31) typically experienced maximum surface temperatures between 16:00 and 

17:00. These times did not fluctuate significantly between summer months (June, July, and  
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Figure 3.11g. Depth-time temperature plot for Station 9 from August 2-17, 2012.  

 

 
Figure 3.11h. Depth-time temperature plot for Station 17 (buoy) from August 2-17, 2012.  
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Figure 3. 11i. Depth-time temperature plot for Station 21 from August 2-17, 2012. 

 

 
Figure 3.11j. Depth-time temperature plot for Station 31 from August 2-17, 2012. 
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August). These cycles are consistent after days of high solar irradiance, regardless of the 

time of year within the study period. Days which experienced variable cloud cover and still 

displayed a reduced diel warming signal typically exhibited rapid changes but of a smaller 

magnitude, approximately 0.5˚C within the hour period. These instances also displayed 

smaller peaks in latent heat flux for the period when compared to days exhibiting stronger 

diel warming signals. After the period of rapid cooling, surface water typically maintained 

the same temperature or cooled up to 0.5˚C, between 0:00 and 6:00. 

 Sensible heat flux was consistently negative during diel warming periods, as the 

surface waters absorbed solar irradiance more efficiently than the overlying air and thus 

heated at a quicker rate. Within these instances, sensible heat flux was typically small (<50 

W∙m-2). Sensible heat flux was significantly greater during evening cooling periods (>100 

W∙m-2), correlating with peaks in latent heat flux (Fig. 3.11e). Air temperatures cool quickly 

once the sun has set, while water retains heat due to the much higher specific heat of water. 

Thus, while latent heat flux is high due to evaporation of water, the direct heat transfer 

between water molecules and air molecules during these cooling periods is also high. 

However, sensible heat flux tends to be approximately one-fourth or less of the value of the 

latent heat flux during these periods (Fig. 3.11d-e). 

 Prior to seasonally permanent isothermal conditions, the contributing factors to 

breakdown of stratification and the onset of isothermal conditions are evident (Fig. 3.12a-i). 

In September, air temperatures were cooler than water temperatures, resulting in 

consistent loss of heat (Fig. 3.12a). Surface waters still showed a diel warming signal, but 

the amount of energy added to the water column by solar irradiance was approaching the 

point where it was offset by the latent, to the greatest extent, and sensible heat fluxes (Fig. 

3.12d-e). Cold water intrusions continued to enter the southern bay, as they do year-round, 

resulting in two contributing cooling effects. Station 8-13, for a brief period beginning 
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before Julian day 255 and lasting to Julian day 257, displayed a warm water mass with 

cooler water both above and below it, with temperature differences >1˚C (Fig. 3.12f). While 

this is likely not typical, it also displays how mixing between water masses takes time. 

Ultimately entrainment of cooler bottom waters and the constant loss of heat at the water 

surface can, at times, rapidly lead to isothermal conditions. 

 Over the same period, Station 21 maintained stratification, despite a cooling of the 

water column (Fig. 3.12h). However, Julian day 261 exhibited both cloud cover (and thus no 

diel warming) and a significant decrease in air temperature (a drop of over 10˚C in 1 day) 

(Fig. 3.12b and 3.12a, respectively). Coupled with strong winds and the cold water 

intrusion, much of the cold water is entrained into the overlying waters, resulting in the top 

of the cold water mass occurring at a depth of approximately 7 meters to a depth of nearly 

13 meters and the overlying waters cooling by >1˚C in one day (Fig. 3.12c and 3.12h, 

respectively). The winds during this period are stronger and more sustained than other 

periods throughout the summer. As expected, September shows stronger and more 

sustained winds throughout than July and August. 

 

Figure 3.12a. Air temperature from the buoy meteorological station from September 11-19, 2012. 
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Figure 3.12b. Solar irradiance from the buoy meteorological station from September 11-19, 2012. 

 
Figure 3.12c. Mean wind speed from the buoy meteorological station from September 11-19, 2012. 

3.7 Daily Surface and Sub-surface Temperature Change 
The differences between the maximum and minimum surface water temperatures 

were calculated for each day (Table 4; Fig. 3.13a). The maximum surface water temperature 

occurred around 16:00 and the minimum surface water temperature occurred around 5:00-

6:00 across all data sets. Station 8 showed significantly higher warming trends when 

compared to the other stations (Fig. 3.13a). However, the significance cannot be attributed 
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Figure 3.12d. Latent heat flux from September 11-19, 2012. 

 
Figure 3.12e. Sensible heat flux from September 11-19, 2012. 

to water clarity, as Station 8 and 9 displayed similar kd values across sampling periods 

(Table 3.2). While the reason for the difference between Station 8 and the other stations 

cannot be determined, the cause in daily differences was investigated by comparing a short 

term data set for the period Julian day 208 to 222 (Fig. 3.13b). This period was chosen as it 

includes the mooring at Chambers Island West, which serves as a baseline for water clarity 
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Figure 3.12f. Depth-time temperature plot for Station 8-13 from September 11-19, 2012. 

 
Figure 3.12g. Depth-time temperature plot for Station 9 from September 11-19, 2012. 
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Figure 3.12h. Depth-time temperature plot for Station 21 from September 11-19, 2012. 

 
Figure 3.12i. Depth-time temperature plot for Station 31 from September 11-19, 2012. 
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Table 3.4. Examples of minimum and maximum sea surface temperatures (SST) for particular days 
at Stations 8, 9, and 31. 

Julian day Station Min. SST (˚C) Max. SST (˚C) Difference (˚C) 

197 8 25.016 29.414 4.398 

201 8 23.93 25.234 1.304 

215 31 24.219 24.871 0.652 

216 31 24.122 24.798 0.676 

217 9 24.702 25.866 1.164 

220 9 23.833 25.914 2.081 

220 31 23.4 24.677 1.277 

225 9 22.011 22.992 0.981 

226 9 21.867 22.872 1.005 

227 9 21.867 23.593 1.726 

228 9 22.298 24.002 3.704 

230 9 21.7 22.178 0.478 

238 8 21.915 25.817 3.902 

238 9 21.772 24.122 2.35 

238 31 21.294 23.28 1.986 

239 9 22.13 22.25 0.12 

240 8 22.058 26.109 4.051 

240 9 21.915 24.171 2.256 

240 31 21.652 23.256 1.604 

242 31 20.889 22.513 1.624 

 

as it displayed the smallest kd value of all sampled stations (Table 3.2). Over this period, 

there was a period of five days which primarily displayed a warming trend (except for one 

day in the five) and a period of several days following this period where diel warming 

across all stations was smaller (Fig. 3.13c). Incident solar irradiance was consistent and did 

not adequately explain the variance (Fig. 3.13e). Air temperature displayed an inverse 

relationship from what would be expected, as the warmest period of air temperatures and 

the period for which it would be expected that the water surface was insulated and warmed 

the most correlates with the period for which surface water temperatures showed minimal 

surface warming (Fig. 3.13d). During this period, mean wind speeds were slightly stronger  
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Figure 3.13a. Difference between the maximum and minimum surface temperatures by site and day. 

 

Figure 3.13b. Difference between the minimum and maximum surface temperatures for site and day 
for the period Julian day 208 to 222. 

 

and sustained, with several mean wind speeds over 8 m∙s-1 (Fig. 3.13f). This did not indicate  

much. However, when considering the sensible and latent heat fluxes over this period, both 

flux values gradually rose beginning on Julian day 215, when the minimal diel surface 

warming period began (Fig. 3.13g and 3.13h, respectively). The flux values peaked on Julian  
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Figure 3.13c. Surface temperature for Stations 8, 9, 17, 21, 31 and Chambers West for the period 
Julian day 208 to 222. 
 
 

 

Figure 3.13d. Air temperature from the meteorological station at Station 17 (buoy) for the period 
Julian day 208 to 222. The red line indicates the average surface water temperature from all stations 
included in the above graph over the period. 
 

day 219, with diel surface warming increasing on Julian day 220. This indicates that the 

wind played a role in the thermal structure prior to this period, mixing warmer surface 

waters down into the water column, allowing the entire water column to absorb more  
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Figure 3.13e. Solar irradiance from the meteorological station at Station 17 (buoy) for the period 
Julian day 208 to 222.  

 

Figure 3.13f. Mean wind speed from the meteorological station at Station 17 (buoy) for the period 
Julian day 208 to 222. The red line indicates speeds above 8 m∙s-1, the speed at which wind has been 
found to be the dominant variable dictating the depth of the mixed layer (Simpson and Dickey 1981; 
others). 
 

energy. The average surface water temperature over this period (indicated by the red line) 

is much above the average air temperature for the period (Fig. 3.13d). Thus, it was expected 

that there would be a transfer of heat out of the water and into the atmosphere. The result  
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Figure 3.13g. Sensible heat flux for the period Julian day 208 to 222.  

 

Figure 3.13h. Latent heat flux for the period Julian day 208 to 222.  

 

was cooler surface waters as well as wind mixing providing a reduced diel warming signal 

in the surface waters. 

 To better determine whether water clarity played a role, the sub-surface heating 

was graphed over the study period (Fig. 3.13i). While Station 31 occasionally exhibits  
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Figure 3.13i. Difference between the maximum and minimum sub-surface temperatures by site and 
day, using the first HOBO logger on the mooring line after the surface logger. 
 

expected behavior with enhanced sub-surface heating in relation to other stations, this 

behavior is infrequent and overall the data show no significant trends. 

3.8 Bottom Water Temperatures  
Tracking the pathway of cold water intrusions can be done by observing when each 

station reaches a minimum temperature or by tracking when each station reaches the same 

temperature. When tracking cold water intrusions in such a way, two trends become 

evident. The first is that bottom temperatures cool first at northerly stations, following a 

trend of Station 31, Station 21, Station 17, and Station 13(Fig. 3.14a-c).  This, however, is 

where the second trend becomes evident. The next station to reach a cooler temperature 

(when considering waters of the same temperature or warmer) is Station 13-19, which is 

the shallowest mooring deployed and is located along the western shore. From this point, 

cold water intrusions track from western stations to eastern stations, following a path of 

Station 13-19, Station 8-13, Station 9, and Station 8. A schematic of this process is illustrated 

in Appendix E. 
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Figure 3.14a. Bottom water temperatures for stations 21, 17, 13, 13-19, 8-13, 9, 8 for the period 
Julian day 193 to 205.  
 

 

Figure 3.14b. Bottom water temperatures for stations 21, 17, 13, 13-19, 8-13, 9, 8 for the period 
Julian day 215 to 225.  
 

Between the two methods, different results are reached. Station 13-19 shows, at 

times, that it reaches the minimum temperature prior to Station 13. When also considering 

when stations reach the same temperature, it becomes evident that the cold water intrusion 

tracks along the central axis of the bay, following the isobathic plateaus within the bay  
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Figure 3.14c. Bottom water temperatures for stations 21, 17, 13, 13-19, 8-13, 9, 8 for the period 
Julian day 235 to 250.  
 

where changes in depth are gradual. As the cold water intrudes into the lower bay, it pushes 

cool, hypolimnetic mid-bay waters up into shallower isobaths, similar to a wave crashing 

onto a beach. This is revealed by the difference in temperatures across different regions, 

including Station 13-19 and Station 13 exhibiting similar minimum temperatures of 

approximately 1˚C warmer than Stations 17 and 21 during the period Julian day 193 to 205, 

and Station 8-13 and Station 9 exhibiting temperatures approximately 2˚C warmer than 

Stations 17 and 21 over the same period (Fig. 3.14a). Station 8, the eastern-most station and 

the second shallowest exhibits a temperature that is 2.5˚C warmer than Station 17 and 21 

over this period. 

 Figures 3.14b and 3.14c display similar pathways of cold water masses across the 

stations. These findings agree well with previous studies suggesting a pathway of cooler 

Lake Michigan waters along the western shore of Green Bay (Kennedy 1982; Miller and 

Saylor 1985; Lathrop et al. 1990). This study shows the pathway of the cold water mass in 

higher detail. It also suggests that considerable mixing and displacement of mid-bay 

hypolimnetic waters occurs, a topic that requires further study in the future. These 
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processes result in significant ramifications for lower Green Bay oxygen dynamics, with 

consequences tracking up the food web (Valenta et al. 2012).  
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Chapter 4: Discussion and Conclusions 

4.1 Discussion 
 Temperature moorings placed throughout southern Green Bay for the summer and 

early fall of 2012 verified trends that other researchers have found in the past – namely, 

that Green Bay stratification becomes increasingly unstable south of Chambers Island, with 

cold water intrusions playing a large part in both the re-stratification of the southerly 

region as well as gradual and repeated cooling of the water column throughout the summer 

period (Kennedy 1982; Miller and Saylor 1985; Gottlieb et al. 1990; Hamidi et al, in prep). 

The origin of these cold water intrusions could not be explicitly determined from this study. 

However, past studies have suggested that the cold water originates from Lake Michigan 

proper, with the water which intrudes into the southern bay either Lake Michigan water or 

hypolimnetic waters from northern Green Bay (Gottlieb et al. 1990). These cold water 

intrusions play a crucial role in the cooling of southern Green Bay throughout the summer, 

with net advection several times larger than net air-sea heat flux at times for southerly 

stations. While the cold water masses are infrequent, they serve as a reset button for the 

system, reinvigorating stratification in waters that become increasingly well-mixed through 

the summer months. Thus, the cold water masses significantly impact the thermal structure 

for short periods of time, resulting in increased hypoxia and local anoxic events throughout 

the summer due to high sediment oxygen demand and a water mass separated from 

atmospheric re-oxygenation for days and even weeks (Valenta et al. 2012). 

 While these cold water masses were common throughout the season at more 

northerly sites (e.g. Station 31), the size of these masses, as well as their presence in more 

southerly stations (e.g. Station 8-13), followed a distinct trend of northerly and westerly 

stations being impacted prior to southerly and easterly stations. This agrees well with 

previous work while also furthering our understanding of the dynamics of the distinct 
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water masses within the system, namely resident Green Bay water, incoming Fox River 

water, and cold, hypolimnetic intrusions (Kennedy 1982; Miller and Saylor 1985; Klump et 

al. 1997). Additionally, kd values estimated from profile data and interpolated spatially 

across the bay indicate trends in water clarity that follow temperature observations, namely 

that more easterly stations exhibit higher kd values. This likely represents Fox River water 

and nutrient-enhanced bay waters, where productivity is much higher and resultant algal 

growth reacts accordingly. This also agrees well with previous studies that have assessed 

the general and historic trends of a distinct trophic gradient in the bay (Sager and Richman 

1991; Klump et al. 1997; Klump et al. 2009). 

There is a large amount of movement between bottom waters throughout Green 

Bay. Cold water intrusions seen within the hypolimnion at mid-bay sites correspond to a 

general cooling of waters in more southerly sites. However, the cooling is to a much greater 

degree at more northern sites, suggesting that the warmer hypolimnion water of mid-bay 

sites is being displaced by cold water intrusions from the upper bay, and this displaced 

water then migrates to more southerly stations. During this migration, the cold water 

intrusions are slowly eroded away and typically become fully mixed into the water column 

at southerly stations during periods of high winds or large convective mixing. By tracking 

individual cold water intrusions, the general path of this migration and the origin of the 

water present (based on temperature) can be inferred. Based on the findings of this study, 

cold water intrusions and the water displaced by these water masses follows a track that is 

defined by the morphometry and seasonal currents of Green Bay coupled with the inflow of 

Fox River water. The primary flow of cold water occurs via the passage west of Chambers 

Island, with the bulk of the water flowing down the central depth contours of the bay. By the 

curvature of the bay itself, and by the direction of the depth contours (southwesterly), the 

cold water follows a path that also corresponds to the dominant currents observed in prior 
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studies (Kennedy 1982; Miller and Saylor 1985). In addition, the dominant track of Fox 

River water is along the eastern shoreline of southern Green Bay (Lathrop et al. 1990). The 

extent to which the cold water intrusions themselves affect the dominant currents observed 

is unknown, but a theoretical approach suggests that the morphometry coupled with 

meteorological forcing is the primary reason for the observed path of the cold water 

masses. 

 Entrainment of cold bottom waters and cooling of surface waters occurred 

frequently and was correlated with above average wind speeds (>5 m∙s-1). Typically, a 

cooling of air temperatures was also observed and all-sky conditions were present a day 

before mixing. When clear-sky conditions were present during cooling and mixing periods, 

winds were typically higher (>10 m∙s-1). 

 Clear-sky conditions resulted in diel warming, with peak surface temperatures 

lagging peak incident irradiance by approximately four hours. While warming signals were 

stronger at more southerly, and turbid, sites, the warming seen between southerly sites was 

not consistent. Past studies have found significant changes in the depth of the thermocline 

in small lakes due to a decrease in water clarity and an increase in CDOM (Fee et al. 1996; 

Perez-Fuentaja et al. 1999; Gunn et al. 2001). However, small lakes carry much stronger 

signals due to reduced fetch and effect of wind on the physics of the system; thus, water 

clarity plays a stronger role in the thermal structure of those systems. Additionally, these 

studies rely upon long-term data sets where clear changes are seen and correlations are 

more easily drawn between variables and observed changes. Dynamic systems such as 

Green Bay experience a multitude of factors which affect the physics of the system, from 

small scale effects including water clarity (despite a largely unknown effect) to large scale 

effects including wind and internal seiches. Oceanic studies have found water clarity to play 

a significant role in the distribution of heat and mean annual sea surface temperatures, with 
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modeling studies observing abnormal subsurface heating when light extinction is 

contingent only on the interactions of pure water with light (Simpson and Dickey 1981; 

Kara et al. 2005; Morel et al. 2007). These systems also have a multitude of physical forcing 

variables and have shown somewhat inconsistent results as model complexity has 

increased, perhaps suggesting the complexity of feedbacks within these systems 

(Gnanadesikan and Anderson 2009). While the system of scale suggests that, due to the size, 

the forcing of oceanic environments is more consistent and, perhaps, more predictable (e.g. 

currents), research on lakes across size ranges has tended to ignore oceanic studies on 

water clarity and resultant thermal structure. The common thought is that meteorological 

forcing variables play a larger role in the thermal structure to such an extent that water 

clarity can no longer play a role (Fee et al. 1996; King et al. 1999a). While no definitive 

results were found between water clarity and thermal structure of the water column, or on 

diel surface warming signals, the findings do suggest that there is significant complexity 

that requires further analysis. Oceanic studies have found clear trends between competing 

variables that define surface energy budgets, including wind speed and direction, incoming 

shortwave radiation, longwave radiation, water clarity and prevailing currents (Kara et al. 

2007). Similar approaches have been taken in Great Lakes circulation models. However, 

within these models lakes are treated as whole systems and to increase the efficiency of the 

models, the water clarity parameters have been homogenized across the lakes based on the 

predominant optical properties. It is in the author’s opinion that all participating variables 

be considered to the fullest capacity through nested models. 

For this study, a complex but somewhat expected picture of the interactions 

between wind, solar irradiance, and air temperature was seen when analyzing the data. 

Solar irradiance consistently heats the water column, with the distribution of this heat 

subject to turbulence in the water column. Mean wind speeds above 8 m∙s-1, and persistent 
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mean winds above 5 m∙s-1, result in deeper mixing of warm surface waters. The depth of this 

mixing, and whether full water column mixing occurs, relies both on the duration and speed 

of these wind events. 

Warm air temperatures help to insulate surface waters, resulting in exaggerated diel 

warming signals during calm, warm air periods. Again, this is expected, as the air-sea 

boundary layer becomes increasingly stable, or less unstable, under these conditions 

(Blanken et al. 2011). Local (surface) heating is exaggerated in Green Bay waters, with 

significant diel warming seen at Station 8. The end result appears to be significant fluxes of 

heat out of surface waters and into the atmosphere in these waters, resulting in less heating 

of the water column as a whole. Initially, it was expected that warmer surface waters due to 

increased local heating would result in higher rates of convective mixing as surface waters 

would cool more rapidly during the evening hours. However, it appears that much of the 

increased solar absorption occurs at a depth in the water column which allows for rapid 

outflux of this heat into the atmosphere, as inspection of continuous temperature mooring 

data suggests that cooling of surface waters occurs at similar rates across stations (except 

for Station 8). 

While many of the findings within this study were not significant, several followed 

established trends. The heat flux for this study agrees well with previous studies when 

considering periods of net positive and net negative flux for the bay. However, flux values 

tended to be larger and more variable, likely due to the large advection terms in this system. 

Previous studies worked in systems where advection did not play as significant a role. 

Schertzer (1987) found mean monthly values that, when converted to like units, result in 

flux values of approximately 115-125 W∙m-2day-1 during the months of June and July. This 

study found net flux values become negative near the end of August, approximately 1-2 

weeks later than the average period for Lake Erie switching to net negative flux values 
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(Schertzer 1987). The degree of variance both interannually and in the calculations of flux 

values suggests close agreement with findings on Lake Erie. 

Bennett (1978) found peak surface temperatures in all of the Great Lakes to be 

significantly below surface temperatures seen within this study across mooring data 

(including Chambers West), as well as flux values that are below those found in this study 

and in better agreement with those found by Schertzer (1987). Lofgren and Zhu (2000) also 

found that the earliest net negative flux out of the Great Lakes occurred in Lake Erie, near 

the end of August, a finding similar to the results from this study. The peak surface 

temperatures for all sampled stations was much above the peak surface temperatures 

observed by Schertzer et al. in the western basin of Lake Erie (1987). 

This study compares well with previous studies considering the abnormal spring 

and summer in 2012. For all NCDC divisions sharing coastline with Green Bay, March 2012 

was the warmest March on record. Additionally, July 2012 was rated as 0.96 on a scale of 1, 

indicating above average temperatures observed during that month. Overall, the spring and 

summer periods for 2012 were above average as a whole. When comparing 2012 data from 

Station 9 to data from 2011, it is evident that the water column contained much more 

thermal energy in 2012, with comparative early summer stratification at Station 9 occurring 

at least five days earlier in 2012 than in 2011. Additionally, the 2012 water column at 

Station 9 took two weeks longer to cool and reach the same isothermal conditions observed 

in 2011, a finding that agrees well with the THERMOS study in which a Norwegian lake was 

thermally manipulated (Lydersen et al. 2008). 

 Warming trends observed within this study suggest that Green Bay is following 

fairly typical trends in many ways, including an increased summer heat gain and warmer 

surface temperatures (Blanken et al. 2011). However, previous studies have suggested that 

a shallowing of the mixed layer and a more stable thermocline will be present (King et al. 
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1997). If these conditions occur in Green Bay, hypoxic conditions in the hypolimnion will be 

further aggravated. Current research has seen an increase in hypoxia in lower Green Bay, 

which correlates with more frequent cold water incursions into the bay (Valenta et al. 

2012). This study finds that, in the mid-bay, a deepening of the mixed layer has occurred, to 

the point that many stations experience full water column mixing throughout the summer. 

These conditions are only changed upon the arrival of cold water intrusions, which form a 

temporary thermocline that separates the benthic water mass from overlying waters. It is 

very likely that these water masses displace already oxygen deficient waters into the lower 

bay, which likely explains the findings by Valenta et al. (in prep). Thus, while incoming 

waters from the northern bay and Lake Michigan may be better oxygenated, the hypoxia 

and anoxia is likely a result of both high sediment oxygen demand and the persistent 

separation of water masses from atmospheric re-oxygenation. The dynamics of these cold 

water intrusions were tracked to a better degree in this study, but the overall dynamics, 

including the cause of these events, still requires further research. 

4.2 Conclusions 
Green Bay exhibited a persistent, stable thermocline throughout the summer 

months at stations with a depth greater than 15 meters. However, occasional breakdown of 

the thermocline occurred, resulting in full water column mixing, with re-formation of the 

thermocline occurring with subsequent cold water intrusions. Stations that have shown 

small thermoclines in the past for most of the summer months exhibited only periodic 

stratification for this warmer than average field year (e.g. Station 17). Shallow, southerly 

sites only displayed a thermocline and strong stratification when cold water masses entered 

southern Green Bay. 

The role of water clarity on the thermal structure of Green Bay was not determined. 

Significant surface heating occurred at more turbid stations but with significant daily 
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variability, resulting in no established trends. The heating of surface waters, and the 

resultant air-sea fluxes, were heavily dependent on prevailing meteorological conditions. 

Periods of high solar irradiance did show more extensive surface heating at southerly 

stations than northerly stations. However, these results are not conclusive with turbidity, as 

the advection terms were quite large. 

Overall, the stability of the atmospheric boundary layer (ABL) was quite variable. 

However, the stability of the ABL, based on calculated air-sea fluxes, followed established 

trends in that overall stability was higher in the early summer months and lower in the late 

summer and early fall. Latent and sensible heat fluxes were highest, particularly for 

extended periods, later in the season. The effect of wind direction could not be ascertained 

within this study; however, wind speed plays a significant role in the overall flux terms and 

thermal structure of the bay. 

Other researchers have worked on basins within large lakes to better determine the 

physics of the systems, as well as working within multiple basins of moderately sized lakes 

(60 km2) (King et al. 1997; King et al. 1999a). These studies give great insight into the 

processes of large systems while maintaining the integrity of the data through scope and 

scale. Considering the variable nature of surface heating across southerly sites with similar 

kd, more extensive studies are needed over either the same region or within a smaller area, 

preferably with more accurate equipment. While the general physics of the system are 

understood, more baseline information is needed, particularly considering the activity of 

cold water intrusions into the southern bay. This information is vital to recovery efforts for 

the bay, especially when attempting to understand the outcome of potential effects due to 

climate change. 

When considering the findings of this study within the context of previous research, 

it becomes evident that summer-time energetics are following similar, but exaggerated, 
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trends (Bennett 1978; Schertzer 1987; Lofgren and Zhu 2000; Blanken et al. 2011). Surface 

water temperatures will likely be much above average in years with abnormally warm 

spring and summer periods, and the heating of the mixed layer in Green Bay will result in 

erosion of hypolimnetic waters to a point where full water column mixing becomes 

increasingly common. While this is somewhat unexpected, as a higher temperature 

differential should lead to stronger stratification, Green Bay is a well-mixed system. The 

meteorological energetics, along with an increased thermal capacity to rapidly erode and 

incorporate smaller, cold water masses, are expected to result in a decrease in stratification. 

Further attention should be paid to climate trends using the near real-time monitoring buoy 

deployed in the bay, with attention also paid to cloud cover estimates and resultant surface 

and whole water column temperatures. 
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Appendix A: HOBO pendant response curve 
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Appendix B: Heat Budget Script 
#Includes components or entirety of: "solarclouds.R", "Verburg&Antenucci2010 sensheat script.R" 
 
Met<-read.csv("C:/Users/Brice/Desktop/GB Buoy/GB17/2012/Excel Files/2012MetData.csv", 
header=T) 
WT<-read.csv("C:/Users/Brice/Desktop/GB Buoy/GB17/2012/Excel Files/2012tempprof.csv", 
header=T) 
setwd("C:/Users/Brice/Desktop/MS") 
 
#------------------------------------------------------- 
#Cloud Cover calculations 
 
TIME.Met<-as.character(Met$Date.Time)  
TIME.Met<-strptime(TIME.Met,format="%m/%d/%Y %H:%M") 
 
MetCloud <-array() 
MetSolarHourMax <-array() 
 
for (day in 183:285){ 
  dayfilter <-TIME.Met$yday>=day-14 & TIME.Met$yday<=day+14 
  for (hour in 0:23) { 
    hourfilter <-TIME.Met$hour == hour & dayfilter 
    maxhour <-max(Met$SolarRad[hourfilter],na.rm=TRUE) 
    MetSolarHourMax[hourfilter] <-maxhour 
  } 
} 
#for loops above calculate the maximum irradiance value for a 4 week moving window, where the 
current day acts 
#as the center point, with the 14 days before and after considered for the maximum value 
 
zerofilter <-MetSolarHourMax < 10         #occassionally night values were below 
                                          #10 but above 0, likely moonlight (lunar cycle) or shiplight 
SolarRad = Met$SolarRad 
SolarRad[zerofilter] = NA 
MetSolarHourMax[zerofilter] = 1           #maximum irradiance is set to 1 ([zerofiler], i.e. only consider 
non-zero values) 
 
MetCloud <- 1-(SolarRad/MetSolarHourMax)  #fraction of cloud cover, determined dividing the 
observed irradiance by maximum irradiance 
                                          #determined above; 1-(value) is to obtain the fraction of cloud cover 
MetCloud 
 
GB<-read.csv("C:/Users/Brice/Desktop/GBmet2012summer.csv", header=T) 
 
TIME.GB<-as.character(GB$Date.Time)  
TIME.GB<-strptime(TIME.GB,format="%m/%d/%Y %H:%M") 
 
July<-which(TIME.GB$mon==6) 
August<-which(TIME.GB$mon==7) 
September<-which(TIME.GB$mon==8) 
October<-which(TIME.GB$mon==9) 
 
sky<-as.character(GB$Sky.Condition) 
sky2<-as.character(GB$Sky.Condition.2) 
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sky3<-as.character(GB$Sky.Condition.3) 
 
sky<-ifelse(sky=="CLR", 0, sky)         #assigning fractions to character strings, based on 
documentation 
sky<-ifelse(sky=="FEW", 0.125, sky) 
sky<-ifelse(sky=="SCT", 0.45, sky) 
sky<-ifelse(sky=="BKN", 0.75, sky) 
sky<-ifelse(sky=="OVC", 1.0, sky) 
sky<-ifelse(sky=="M", NA, sky) 
sky<-ifelse(sky=="VV", NA, sky) 
 
sky2<-ifelse(sky2=="", NA, sky2) 
sky2<-ifelse(sky2=="FEW", 0.125, sky2) 
sky2<-ifelse(sky2=="SCT", 0.45, sky2) 
sky2<-ifelse(sky2=="BKN", 0.75, sky2) 
sky2<-ifelse(sky2=="OVC", 1.0, sky2) 
 
sky3<-ifelse(sky3=="", NA, sky3) 
sky3<-ifelse(sky3=="FEW", 0.125, sky3) 
sky3<-ifelse(sky3=="SCT", 0.45, sky3) 
sky3<-ifelse(sky3=="BKN", 0.75, sky3) 
sky3<-ifelse(sky3=="OVC", 1.0, sky3) 
 
sky<-as.numeric(sky) 
sky2<-as.numeric(sky2) 
sky3<-as.numeric(sky3) 
 
sky.m<-matrix(nrow=3000,ncol=3) 
sky.m[,1]<-sky 
sky.m[,2]<-sky2 
sky.m[,3]<-sky3 
 
skyMeans <-rowMeans(sky.m,na.rm=TRUE)     #integrating multiple cloud fractions for hourly 
periods into one mean value for that hour 
skyMeans 
 
GB[,ncol(GB)+1]<-skyMeans                 #adding the mean cloud fractions onto the original GB data 
frame 
 
Met[,ncol(Met)+1]<-MetCloud               #adding the cloud fractions onto the original buoy data frame 
 
metarray<-array() 
 
for (myrow in 1:length(TIME.Met$yday)){ 
   
  thishourfilter <-which(TIME.GB$hour == TIME.Met$hour[myrow] & TIME.GB$yday == 
TIME.Met$yday[myrow]) 
  thishourfilter=thishourfilter[length(thishourfilter)] 
  metarray[myrow] <- GB$V20[thishourfilter] 
} 
 
met.m<-matrix(nrow=4932, ncol=1) 
met.m<-metarray 
 
cloudarray<-array() 
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cloudarray<-ifelse(is.na(Met$V10), met.m, Met$V10) 
 
#------------------------------------------------------- 
 
x<-WT$Julian.Day 
match<-match(x, Met$Julian.Day)                       #syncing t-string data with met data (due to some data 
missing for each dataset) 
 
MetDF<-matrix(nrow=length(match),ncol=9)              #ncol is the number of columns in the original 
dataset 
MetDF<-data.frame(Met[match,]) 
 
cloudfractionmatrix<-matrix(nrow=4932, ncol=2) 
cloudfractionmatrix[,1]<-Met$Julian.Day 
cloudfractionmatrix[,2]<-cloudarray 
 
match<-match(x, cloudfractionmatrix[,1]) 
 
cloudfractionDF<-matrix(nrow=length(match), ncol=2) 
cloudfractionDF<-data.frame(cloudfractionmatrix[match,]) 
c <-cloudfractionDF[,2]                               #fraction cloud cover 
 
#Constants used in the calculations 
const_SpecificHeatAir = 1005            #Units : J kg-1 K-1 
const_vonKarman = 0.41                  #Units : none 
const_Gravity = 9.81                    #Units : m s-2 
const_Charnock = 0.013                  #Units : none 
 
 
Ts <-WT$X1m                     #Surface temperature, water 
Ta <-MetDF$AirTemp              #air temperature (buoy met station) 
P <- MetDF$Rel.BP               #hPa, equivalent to mbar (mbar used in V&A 2010) 
Uz <-MetDF$WindSp 
RH <-MetDF$RH 
z <-rep(1.5, 4828)              #met station height on buoy, in meters 
print(length(Uz)) 
 
filter = (!is.na(Ts)) & (!is.na(Ta)) & (!is.na(P)) & (!is.na(Uz)) & (!is.na(RH)) & (!is.na(z)) 
print(sum(filter)) 
Ts=Ts[filter] 
Ta=Ta[filter] 
P=P[filter] 
Uz=Uz[filter] 
RH=RH[filter] 
z=z[filter] 
c=c[filter] 
 
#------------------------------------------------------- 
#Function list, used by script below 
#------------------------------------------------------- 
 
PSIM=function(zeta) { 
  psim=NA     
  #function psim=PSIM(zeta) 
  #Function to compute stability functions for momentum 
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  if (zeta < 0) { 
    X = (1 - 16*zeta)^0.25  
    psim = 2*log((1 + X)/2) + log((1 + X*X)/2)-2*atan(X) + pi/2       
     
  } else if (zeta > 0) {    #Stable case 
    if (zeta > 0.5) {       
      if (zeta > 10.0) { 
        psim = log(zeta) - 0.76*zeta - 12.093 
      } else { 
        psim = 0.5/(zeta*zeta) - 4.25/zeta - 7.0*log(zeta) - 0.852  
      } 
    } else {  
      psim = -5*zeta 
    } 
  }else{  
    psim = 0 
  } 
  return(psim)  
} 
 
#------------------------------------------------------- 
PSITE=function(zeta) { 
  psite=NA 
  #Function to compute stability functions for sensible and latent heat 
  if (zeta < 0.0) { 
    X = (1 - 16*zeta)^0.25  
    psite = 2*log((1 + X*X)/2) 
     
  } else if (zeta > 0.0) {    #Stable case 
    if (zeta > 0.5) {      
      if (zeta > 10.0) { 
        psite = log(zeta) - 0.76*zeta - 12.093 
      } else { 
        psite = 0.5/(zeta*zeta) - 4.25/zeta - 7.0*log(zeta) - 0.852 
      } 
    } else { 
      psite = -5*zeta 
    } 
  } else { 
    psite = 0.0 
  } 
  return(psite) 
} 
 
#------------------------------------------------------- 
 
compute_senslatentheat <- function(Uz,Ta,Ts,RH,P,z){ 
 
#USAGE 
 
#    mm=compute_senslatentheat(Dates,Uz,Ta,Ts,RH,p,z); 
 
#Script to compute surface thermodynamic fluxes (sensible and latent) using the  
#bulk aerodynamic approach taking into account atmospheric stability,  
#including roughness lengths of momentum, vapor and temperature 
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#This set of scripts was constructed by Piet Verburg and Jason P. Antenucci 
 
#Please reference the following paper if this script is of use to you. 
#Verburg, P. and J.P. Antenucci. 2010. Persistent unstable atmospheric boundary layer 
#enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika.  
#Journal of Geophysical Research - Atmospheres 115, D11109. doi: 
   #10.1029/2009JD012839 
 
#Input 
   #Uz:    Wind Speed at the measurement height (m/s) 
   #Ta:      Air Temperature at the measurement height (degrees C) 
   #Ts:     Surface Water Temperature (degrees C) 
   #RH:     Relative Humidity (%) 
   #P :     Air Pressure (mb) 
   #z:      Wind Sensor Height (m) 
 
# Output 
#   mm=[RH Ta Ts U_Z u_star zeta L C_H C_HN C_D C_DN E Evap H z_0 z_E z_T del_theta];  
  
#Last update 2010-10-11 
 
#Step 2c - Compute saturated vapour pressure at air temperature 
es<-6.11*exp((17.27*Ta)/(237.3+Ta))  #Units : mb ##REF## 
#Step 2d - Compute vapour pressure 
ea<-(RH*es)/100  #Units : mb 
#End step 2 
 
 
#Step 3 - Compute other values used in flux calculations 
#Step 3a - Compute specific humidity 
qz <-(0.622*ea)/P   #Units: kg kg-1 
#Step 3b - Compute saturated vapour pressure at water temperature 
esat<-6.11*exp((17.27*Ts)/(237.3+Ts))  #Units : mb ##REF##  
#Step 3c - Compute humidity at saturation (Henderson-Sellers 1986 eqn 36) 
qs <-(0.622*esat)/P   #Units: kg kg-1 
#Step 3d - Compute latent heat of vaporisation 
Lv <-2.501e6 - 2370*Ts  #Units : J kg-1 ** EQUATION FROM PIET ##REF## 
#Step 3e - Compute gas constant for moist air 
Ra <-287*(1+0.608*qz)  #Units : J kg-1 K-1 
#Step 3f - Compute air density 
pa <-(100*P)/(Ra*(Ta+273.16))  #Units : kg m-3 
#Step 3g - Compute kinematic viscosity of air  
v = (1/pa)*(4.94e-8*Ta + 1.7184e-5);  #Units : m2 s-1 
#Step 3h - Compute virtual air temperature and virtual air-water temperature difference 
Tav = (Ta+273.16)*(1+0.61*qz)  #Units - K 
Tsv = (Ts+273.16)*(1+0.61*qs)  #Units - K 
del_theta = Tsv - Tav 
#Step 3h - Compute water density  
pw = 1000*(1-1.9549*0.00001*abs(Ts-3.84)^1.68) 
#End step 3 
 
#Step 4 - Compute initial estimates of neutral transfer coefficients. This contains an iteration loop  
#Step 4a - Compute initial approximation to AIR shear velocity 
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u_star = Uz*sqrt(0.00104+0.0015/(1+exp((-Uz+12.5)/1.56)))                    #Amorocho and DeVries, 
initialise ustar using Uz 
#Step 4b - Compute initial roughness length for momentum 
z_0 = (const_Charnock*u_star^2/const_Gravity) + (0.11*v/u_star)                 #Units: m 
#Step 4c - Iterate initial u_star 
sprintf('Computing neutral coefficients\n') 
z_0_prev=z_0*1.1                                                                #To initiate the iteration 
 
 
for (i in 1:length(Uz)){ 
  if(is.finite(abs(z_0_prev[i])) && (abs(z_0_prev[i]) > 0.000001)){                 #&& is for a scalar 
    while (abs((z_0[i] - z_0_prev[i]))/abs(z_0_prev[i]) > 0.000001) {               #Converge when z_0 
within 0.0001 of previous value   
      u_star[i]=const_vonKarman*Uz[i]/(log(z[i]/z_0[i]))                               #Compute u_star 
      dummy = z_0[i]                                                                #Used to control while loop 
      dummy2=(const_Charnock*u_star[i]^2/const_Gravity) + (0.11*v[i]/u_star[i])     #Compute new 
roughness length 
      z_0_prev[i] = dummy 
      if(!is.finite(dummy2))break 
      z_0[i]=dummy2 
    } 
  }                                                                               #Used to control while loop 
} 
                   
#Step 4d - Compute initial neutral drag coefficient 
C_DN = (u_star^2)/(Uz^2)                                                         #Units - none 
#Step 4e - Compute roughness Reynolds number  
Re_star = u_star*z_0/v                                                           #Units - none 
#Step 4f - Compute initial roughness length for temperature 
z_T = z_0*exp(-2.67*(Re_star)^(1/4) + 2.57)                                      #Units - m 
#z_T = real(z_T)                                                                  #Get real components, and NaN can create imag 
component despite no data 
#Step 4g - Compute initial roughness length for vapour  
z_E = z_0*exp(-2.67*(Re_star)^(1/4) + 2.57)                                      #Units - m 
#z_E = real(z_E)                                                                  #Get real components, and NaN can create imag 
component despite no data 
#Step 4h - Compute initial neutral sensible heat transfer coefficient  
C_HN = const_vonKarman*sqrt(C_DN)/(log(z/z_T)) 
#Step 4i - Compute initial neutral latent heat transfer coefficient 
C_EN = const_vonKarman*sqrt(C_DN)/(log(z/z_E)) 
#End step 4 
 
#Step 5 - Start iteration to compute corrections for atmospheric stability 
H_initial = c() 
E_initial = c() 
L_initial = c() 
zeta_initial = c() 
psim = c() 
psit = c() 
psie = c() 
C_D = c() 
C_H = c() 
C_E = c() 
L = c() 
count = c() 
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zeta = c() 
H = c() 
E = c() 
L = c() 
 
sprintf('Correcting neutral coefficients\n') 
for (i in which(Uz>0)){                                                           #Need to iterate separately for each record 
                                                                             #Step 5a - Compute initial sensible heat flux based on neutral 
coefficients 
  H_initial[i] = pa[i]*const_SpecificHeatAir*C_HN[i]*Uz[i]*(Ts[i]-Ta[i])            #Units : W m-2 
                                                                                   #Step 5b - Compute initial latent heat flux based on 
neutral coefficients 
  E_initial[i] = pa[i]*Lv[i]*C_EN[i]*Uz[i]*(qs[i]-qz[i])                           #Units : W m-2 
                                                                                   #Step 5c - Compute initial Monin-Obukhov length 
  L_initial[i] = (-
pa[i]*u_star[i]^3*Tav[i])/(const_vonKarman*const_Gravity*(H_initial[i]/const_SpecificHeatAir + 
0.61*E_initial[i]*(Ta[i]+273.16)/Lv[i])) 
                                                                                   #Units - m 
                                                                                   #Step 5d - Compute initial stability parameter 
  zeta_initial[i] = z[i]/L_initial[i] 
                                                                                   #Step 5e - Compute initial stability function 
  psim[i]=PSIM(zeta_initial[i])                                                    #Momentum stability function 
  psit[i]=PSITE(zeta_initial[i])                                                   #Sensible heat stability function 
  psie[i]=PSITE(zeta_initial[i])                                                   #Latent heat stability function 
                                                                                   #Step 5f - Compute corrected coefficients 
  C_D[i]=const_vonKarman*const_vonKarman/(log(z[i]/z_0[i])-psim[i])^2 
  C_H[i]=const_vonKarman*sqrt(C_D[i])/(log(z[i]/z_T[i])-psit[i]) 
  C_E[i]=const_vonKarman*sqrt(C_D[i])/(log(z[i]/z_E[i])-psie[i]) 
                                                                                   #Step 5g - Start iteration 
  L_prev = L_initial[i] 
  L[i] = L_prev*1.1                                                                #Initialise while loop 
  count[i]=0 
  while (abs((L[i] - L_prev))/abs(L_prev) > 0.000001) {                                #Converge when L within 
0.0001 or previous L 
                                                                                   #Iteration counter 
   count[i]=count[i]+1 
    if (count[i] > 20) break 
                                                                                   #Step 5i - Compute new z_O, roughness length for 
momentum 
    z_0[i]= (const_Charnock*u_star[i]^2/const_Gravity) + (0.11*v[i]/u_star[i]) 
                                                                                   #Step 5j - Compute new Re_star 
    Re_star[i] = u_star[i]*z_0[i]/v[i] 
                                                                                   #Step 5k - Compute new z_T, roughness length for 
temperature 
    z_T[i] = z_0[i]*exp(-2.67*(Re_star[i])^(1/4) + 2.57) 
                                                                                   #Step 5l - Compute new z_E, roughness length for vapour 
    z_E[i] = z_0[i]*exp(-2.67*(Re_star[i])^(1/4) + 2.57) 
                                                                                   #Step 5p - Compute new stability parameter 
    zeta[i] = z[i]/L[i] 
  sprintf('zeta %g\n',zeta[i]) 
                                                                                   #Step 5q - Check and enforce bounds on zeta 
    if (zeta[i] > 15) 
     zeta[i] = 15 
    else if (zeta[i] < -15) 
      zeta[i] = -15; 
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                                                                                   #Step 5r - Compute new stability functions 
        psim[i]=PSIM(zeta[i])  #Momentum stability function 
        psit[i]=PSITE(zeta[i])  #Sensible heat stability function 
        psie[i]=PSITE(zeta[i])  #Latent heat stability function 
                                                                                   #Step 5s - Compute corrected coefficients 
        C_D[i]=const_vonKarman*const_vonKarman/(log(z[i]/z_0[i])-psim[i])^2 
        C_H[i]=const_vonKarman*sqrt(C_D[i])/(log(z[i]/z_T[i])-psit[i]) 
        C_E[i]=const_vonKarman*sqrt(C_D[i])/(log(z[i]/z_E[i])-psie[i]) 
#Step 5m - Compute new H (now using corrected coefficients) 
        H[i] = pa[i]*const_SpecificHeatAir*C_H[i]*Uz[i]*(Ts[i]-Ta[i]) 
#Step 5n - Compute new E (now using corrected coefficients) 
        E[i] = pa[i]*Lv[i]*C_E[i]*Uz[i]*(qs[i]-qz[i]) 
#Step 5h - Compute new u_star 
        u_star[i]=sqrt(C_D[i]*Uz[i]^2) 
#Step 5o - Compute new Monin-Obukhov length 
        dummy = L[i]  #Used to control while loop 
        L[i] = (-pa[i]*u_star[i]^3*Tav[i])/(const_vonKarman*const_Gravity*(H[i]/const_SpecificHeatAir 
+ 0.61*E[i]*(Ta[i]+273.16)/Lv[i])) 
        L_prev = dummy    #Used to control while loop 
     } 
} 
      
for(i in which(Uz==0)){      
     H[i]=0 
     E[i]=0 
} 
#end 
#end 
#End step 5 
 
#Take real values to remove any complex values that arise from missing data or NaN. 
#C_D=real(C_D) 
#C_E=real(C_E) 
#C_H=real(C_H) 
#z_0=real(z_0) 
#z_E=real(z_E) 
#z_T=real(z_T) 
 
#Compute evaporation [mm/day] 
Evap = 86400*1000*E/(pw*Lv) 
 
#Clean up output signal based on any missing data points 
#index=which(is.na(RH)); E(index)=NaN; H(index)=NaN; Evap(index)=NaN; zeta(index)=NaN; 
ustar(index)=NaN; C_H(index)=NaN; C_D(index)=NaN; C_HN(index)=NaN; C_DN(index)=NaN; 
L(index)=NaN; z_0(index)=NaN; z_E(index)=NaN; z_T(index)=NaN; del_theta(index)=NaN; 
#index=which(is.na(Ta)); E(index)=NaN; H(index)=NaN; Evap(index)=NaN; zeta(index)=NaN; 
ustar(index)=NaN; C_H(index)=NaN; C_D(index)=NaN; C_HN(index)=NaN; C_DN(index)=NaN; 
L(index)=NaN; z_0(index)=NaN; z_E(index)=NaN; z_T(index)=NaN; del_theta(index)=NaN; 
#index=which(is.na(Ts)); E(index)=NaN; H(index)=NaN; Evap(index)=NaN; zeta(index)=NaN; 
ustar(index)=NaN; C_H(index)=NaN; C_D(index)=NaN; C_HN(index)=NaN; C_DN(index)=NaN; 
L(index)=NaN; z_0(index)=NaN; z_E(index)=NaN; z_T(index)=NaN; del_theta(index)=NaN; 
#index=which(is.na(Uz)); E(index)=NaN; H(index)=NaN; Evap(index)=NaN; zeta(index)=NaN; 
ustar(index)=NaN; C_H(index)=NaN; C_D(index)=NaN; C_HN(index)=NaN; C_DN(index)=NaN; 
L(index)=NaN; z_0(index)=NaN; z_E(index)=NaN; z_T(index)=NaN; del_theta(index)=NaN; 
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#index=which(is.na(p)); E(index)=NaN; H(index)=NaN; Evap(index)=NaN; zeta(index)=NaN; 
ustar(index)=NaN; C_H(index)=NaN; C_D(index)=NaN; C_HN(index)=NaN; C_DN(index)=NaN; 
L(index)=NaN; z_0(index)=NaN; z_E(index)=NaN; z_T(index)=NaN; del_theta(index)=NaN; 
 
mm=data.frame(RH, Ta, Ts, Uz, u_star, zeta, L, C_H, C_HN, C_D, C_DN, E, Evap, H, z_0, z_E, z_T, 
del_theta, pa, pw) 
return(mm) 
} 
dataframedata = data.frame(Uz,Ta,Ts,RH,P,z) 
write.table(x=dataframedata, file="formatlab.txt") 
holygrail=compute_senslatentheat(Uz,Ta,Ts,RH,P,z) 
 
#------------------------------------------------------- 
#Necessary Variables from previous loop 
es<-6.11*exp((17.27*Ta)/(237.3+Ta)) 
ea<-(RH*es)/100 
qz <-(0.622*ea)/P   #Units: kg kg-1 
esat<-6.11*exp((17.27*Ts)/(237.3+Ts))  #Units : mb ##REF##  
qs <-(0.622*esat)/P   #Units: kg kg-1 
Lv <-2.501e6 - 2370*Ts  #Units : J kg-1 ** EQUATION FROM PIET ##REF## 
Ra <-287*(1+0.608*qz)  #Units : J kg-1 K-1 
pa <-(100*P)/(Ra*(Ta+273.16))  #Units : kg m-3 
v = (1/pa)*(4.94e-8*Ta + 1.7184e-5);  #Units : m2 s-1 
Tav = (Ta+273.16)*(1+0.61*qz)  #Units - K 
Tsv = (Ts+273.16)*(1+0.61*qs)  #Units - K 
del_theta = Tsv - Tav 
pw = 1000*(1-1.9549*0.00001*abs(Ts-3.84)^1.68) 
 
#------------------------------------------------------- 
#Longwave Calculations 
sbc <-5.67e-8                           #Stefan-Boltzmann constant, W m^-2 K^-1 
Em <-0.97                               #emissivity, from Lerman, Imboden & Gat, 1995 
 
Ecl <-0.643*((ea/(Ta+273.15))^(1/7))    #clear sky emissivity 
Qlw_clear <-Ecl*sbc*((Ta+273.15)^4)     #longwave radiation under clear sky conditions 
 
Qlw <-Qlw_clear*(1+0.242*(c^0.583)) 
 
Qlw_up <-Em*sbc*((Ts+273.15)^4)           #Ts in Kelvin for calculation, L,I&G, 1995 
 
#------------------------------------------------------- 
#Shortwave Calculations 
Qsw <-MetDF$SolarRad[filter] 
a<-.08                                  #8%, based on Schertzer 1978, estimates for May through October 
                                        #using Lake Superior data from 1973 
Qsw_up <-a*Qsw 
 
#------------------------------------------------------- 
 
H <-holygrail$H                         #sensible heat, W/m^2 
 
E <-holygrail$E                         #latent heat, W/m^2 
 
Evaporation <-holygrail$Evap            #evaporation, units = mm/day 
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Qnet <- Qsw - Qsw_up + Qlw - Qlw_up - H - E 
 
flux.m <-matrix(nrow=4533, ncol=9) 
 
JD <-MetDF[,1] 
JD <-JD[filter] 
 
flux.m[,1]<-JD 
flux.m[,2]<-Qnet 
flux.m[,3]<-Qsw 
flux.m[,4]<-Qsw_up 
flux.m[,5]<-Qlw 
flux.m[,6]<-Qlw_up 
flux.m[,7]<-H 
flux.m[,8]<-E 
flux.m[,9]<-Evaporation 
 
windows() 
plot(JD, E, type="p", main="Energy Flux", xlab="Julian Day", ylab="W/m^2", ylim=c(-600,1000), 
col="red", pch=17) 
points(JD, H, col="blue", pch=15) 
points(JD, Qsw, col="orange", pch=8) 
points(JD, Qlw, col="green", pch=4) 
points(JD, Qnet, col="black", pch=19) 
 
legendtxt<-c("Net", "Latent", "Sensible", "Shortwave (incoming)", "Longwave (incoming)") 
legendlns<-c(lwd=1,lwd=1,lwd=1,lwd=1,lwd=1) 
legendcol<-c(col="black", col="red", col="blue", col="orange", col="green") 
legend("topright", legendtxt, lwd=legendlns, col=legendcol, bty="n", cex=0.7) 
 
 
TimeVector = seq(flux.m[14,1], max(flux.m[,1]), 1) 
 
matrix = matrix(nrow=100, ncol=9) 
 
for (i in 1: length(TimeVector)-1) { 
  L1<-(JD>TimeVector[i] & JD<TimeVector[i+1]) 
  matrix[i,1]<-mean(JD[L1]) 
  matrix[i,2]<-mean(Qnet[L1], na.rm=T) 
  matrix[i,3]<-mean(Qsw[L1], na.rm=T) 
  matrix[i,4]<-mean(Qsw_up[L1], na.rm=T) 
  matrix[i,5]<-mean(Qlw[L1], na.rm=T) 
  matrix[i,6]<-mean(Qlw_up[L1], na.rm=T) 
  matrix[i,7]<-mean(H[L1], na.rm=T) 
  matrix[i,8]<-mean(E[L1], na.rm=T) 
  matrix[i,9]<-mean(Evaporation[L1], na.rm=T) 
} 
 
matrix2 = matrix(nrow=100, ncol=7) 
 
for (i in 1: length(TimeVector)-1) { 
  L1<-(JD>TimeVector[i] & JD<TimeVector[i+1]) 
  matrix2[i,1]<-mean(JD[L1]) 
  matrix2[i,2]<-mean(Qnet[L1], na.rm=T) 
  matrix2[i,3]<-mean(Qsw[L1]-Qsw_up[L1], na.rm=T) 



109 
 

 

  matrix2[i,4]<-mean(Qlw[L1]-Qlw_up[L1], na.rm=T) 
  matrix2[i,5]<-mean(-1*H[L1], na.rm=T) 
  matrix2[i,6]<-mean(-1*E[L1], na.rm=T) 
  matrix2[i,7]<-mean(Evaporation[L1], na.rm=T) 
} 
 
windows() 
plot(matrix2[,1], matrix2[,2], type="l", main="Energy Flux", xlab="Julian Day", ylab="W/m^2", 
ylim=c(-600,800), col="black", lwd=3, cex=2, cex.main=1.6, cex.axis=1.6, cex.lab=1.6) 
lines(matrix2[,1], matrix2[,5], col="blue", lwd=3) 
lines(matrix2[,1], matrix2[,3], col="orange", lwd=3) 
lines(matrix2[,1], matrix2[,4], col="forestgreen", lwd=3) 
lines(matrix2[,1], matrix2[,6], col="red", lwd=3) 
 
legendtxt<-c("Net", "Latent", "Sensible", "Net Shortwave", "Net Longwave") 
legendlns<-c(lwd=3,lwd=3,lwd=3,lwd=3,lwd=3) 
legendcol<-c(col="black", col="red", col="blue", col="orange", col="forestgreen") 
legend(x=264, y=850, legendtxt, lwd=legendlns, col=legendcol, bty="n", cex=1.4) 
 
windows() 
plot(matrix2[,1], matrix2[,2], type="p", main="Energy Flux", xlab="Julian Day", ylab="W/m^2", 
ylim=c(-600,800), col="black", pch=20, cex=1.4) 
points(matrix2[,1], matrix2[,5], col="blue", pch=17, cex=1.4) 
points(matrix2[,1], matrix2[,3], col="orange", pch=8, cex=1.4) 
points(matrix2[,1], matrix2[,4], col="forestgreen", pch=4, cex=1.4) 
points(matrix2[,1], matrix2[,6], col="red", pch=3, cex=1.4) 
 
legendtxt<-c("Net", "Latent", "Sensible", "Net Shortwave", "Net Longwave") 
legendlns<-c(lwd=2,lwd=2,lwd=2,lwd=2,lwd=2) 
legendcol<-c(col="black", col="red", col="blue", col="orange", col="forestgreen") 
legend("topright", legendtxt, lwd=legendlns, col=legendcol, bty="n", cex=0.7) 
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Appendix C: Matching Sonde profiles to HOBO profiles 
 
library(akima) 
setwd("C:/Users/Brice/Desktop/2012 HOBO/July") 
 
#--------------------------------------------------------------------- 
 
SP<-read.csv("C:/Users/Brice/Desktop/Sonde Profs 12 R/July 2012/CE.csv", header=T) 
 
HOBO<-read.csv("C:/Users/Brice/Desktop/2012 HOBO/July/CE_july.csv", header=T) 
timebase<-as.numeric(as.POSIXct("1980-01-01 00:00:00")) 
timenum<-function(x) as.numeric(as.POSIXct(paste("1980-01-01", x)))-timebase 
sptimenum<-timenum(SP$Time) 
str(sptimenum) 
HOBOtimenum<-timenum(HOBO$Time) 
spmax<-max(sptimenum) 
spmin<-min(sptimenum) 
HOBOfilter<-HOBOtimenum>=spmin & HOBOtimenum<=spmax 
HOBO<-HOBO[HOBOfilter,] 
 
result<-aspline(x=timenum(SP$Time), y=SP$Depth, xout=timenum(HOBO$Time), 
method="original") 
result 
windows() 
plot(result) 
 
TimeDF<-matrix(nrow=length(HOBO$Time),ncol=2) 
TimeDF<-data.frame(result) 
write.table(TimeDF, file="CEHOBOdepths.txt", sep="\t", quote=FALSE, row.names=FALSE) 
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Appendix D: Light-Dark Bottle Data 
 

Bottle June 2012  July 2012  August 2012  

 12h-respiration 12-h GPP  12h-respiration 12-h GPP 12h-respiration 12-h GPP 

CLR -0.349 0.052 -0.226 0.282 0.282 0.282 

2.5 0.114 0.514 0.563 1.071 1.071 1.071 

4 0.039 0.439 0.516 1.024 1.024 1.024 

 
Bottle column indicates the type of bottle used for the experiment, with clear meaning a clear bottle, 
2.5 being 2.5 wraps of screen and 4 being 4 wraps of screen around a clear bottle. Respiration was 
measured using a dark bottle. Data is from 2012. 
 
*Data courtesy of Shelby LaBuhn, PhD candidate 
 

Wrap Level Avg. Irradiance (lum/ft2) Percent Available Avg. Percent Available 

Clear 6-25 8690.206994 100   

Clear 6-27 5636.121878 100   

2x 6-25 2774.898363 31.93132643   

2x 6-27 1703.130836 30.21813355 31.07472999 

4x 6-25 1524.82381 17.54646133   

4x 6-27 451.4723127 8.010336228 12.77839878 

 
Wrap level indicates the number of times screen was wrapped around an individual HOBO pendant 
for shading purposes. The average irradiance was taken for the period when HOBO sensors were 
“incubated” alongside the light/dark bottles. This time period was approximately 9 hours on June 25 
and approximately 6 hours on June 27. Data is from 2013. 
 
*Data courtesy of Troy Barber, REU intern 
 

Algal Energetic Sink Calculations (from Section 2.3) 
 
Minimum Primary Production Estimate 
 
                

                    
   
                  

                        

   
               

 
where the units for h are J∙s-1 and for c are m∙s-1  

 
Maximum Primary Production Estimate 
 
                 

                    
   
                  

                        

   
                

 
where the units for h are J∙s-1 and for c are m∙s-1  
 
*These estimates are based on primary production estimates from 2012 as shown above and are 
based upon an average photic depth of 6 meters.  
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Appendix E: Cold Water Intrusion Schematic 
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