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Abstract 
Colored dissolved organic matter (CDOM) absorption varies significantly across the 

global oceans, presumably due to differences in source and degradation pathways. 
Tracking this variability on a global, or even regional, scale requires broad temporal and 
spatial sampling at high frequency. Satellite remote sensing provides this platform; 
however, current and near future sensors are/will be limited to measurements within the 
UV and visible wavelengths (> 350 nm) while most optical proxies estimating CDOM 
composition, and relevant for understanding largescale biogeochemical processes, use 
wavelengths less than 350 nm. This dissertation examines global variability in CDOM 
spectral variability utilizing a variety of optical metrics. After assessing global variability 
in these optical metrics, we considered the ability to observe changes in remotely-sensed 
reflectance (Rrs(l)) strictly due to Sg variability. Using the radiative transfer software, 
HydroLight, and data from Lake Superior, modeled Rrs(l) showed that Sg variability 
significantly alters Rrs(l) in waters where ag(l) contributes >20% to total non-water 
absorption (at-w(l)) at 440 nm. Based on the proposed signal-to-noise ratio of NASA’s 
proposed Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) hyperspectral sensor, Sg 
variability on the order of 0.001 nm-1 is an observable feature in these waters. We then 
developed an capable of estimating Sdg free of bias on hyperspectral absorption data. The 
algorithm shows that the increased spectral resolution of hyperspectral sensors should 
allow for remote estimation of Sdg and potentially Sg, providing a broad view of 
biogeochemical variability reflected by Sg. 
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1 Optically estimating CDOM composition across 
diverse regions and spectral ranges 

1.1 Introduction 

Dissolved organic matter (DOM) is the largest pool of reduced carbon in the ocean 
[Hansell et al., 2009]. Slight alterations in DOM remineralization can result in significant 
increases or decreases in the release of CO2 [Mannino et al., 2014] with remineralization 
rates highly dependent on DOM composition. DOM constituents vary from labile, readily 
metabolized compounds (e.g. phytoplankton exudates) important to short-term climate 
dynamics and food web processes to refractive compounds (e.g. microbial by-products) 
de-coupled from modern climate dynamics and largely precluded from food web dynamics 
[Hansell, 2013]. DOM contains optically active components in colored and fluorescent 
dissolved organic matter (CDOM and FDOM, respectively), with CDOM a small, variable 
portion of the total DOM pool and FDOM a small, variable portion of the CDOM pool 
[Stedmon and Nelson, 2015]. CDOM impacts the spectral quality and intensity of the 
underwater light field, surface ocean heating and plays direct and indirect roles in 
biogeochemical cycling [Andrew et al., 2013; Hickman et al., 2010; Kim et al., 2016]. 

Advances in optical characterization through absorption and fluorescence 
techniques have illuminated mechanistic relationships between CDOM molecular 
composition and optical properties such as the shape of the CDOM absorption spectra 
indicated by the spectral slope of CDOM (SCDOM) [Helms et al., 2008; Stedmon and 
Markager, 2005; Walker et al., 2013]. Changes to CDOM optical characteristics have been 
related to general classifications of the composition of CDOM including molecular weight 
and origin [Spencer et al., 2008]. The strongest absorption-based indicators of these 
properties rely on SCDOM from 275-295 nm and 350-400 nm (S275:295 and S350:400, 
respectively) since the largest divergence in spectral properties across compositionally 
unique CDOM samples are found in these spectral regions [Helms et al., 2008]. Low values 
of S275:295 (~0.01 nm-1) generally represent high molecular weight material (e.g. lignin) that 
decreases in molecular size primarily from photodegradation and secondarily from 
microbial degradation [Del Vecchio and Blough, 2002]. S275:295 increases with 
photodegradation, with terrestrial material often showing markedly different S275:295 values 
due to the presence of lignin. Conversely, S350:400 generally decreases with 
photodegradation, potentially due to the presence of photorefractory chromophores that 
absorb in this portion of the spectrum [Helms et al., 2013].  

Beyond S275:295 and S350:400, consistency is lacking in the spectral range used to 
calculate SCDOM. Typically, a spectral range that best represents the entire aCDOM spectra is 
used, as broadening the spectral range considered tends to decrease overall error in 
representing the aCDOM spectrum [Schwarz et al., 2002]. However, broad range SCDOM (e.g. 
S240:700) has not been considered extensively for mechanistic relationships with CDOM 
composition. Rather, most studies track SCDOM values across geographically or temporally 
unique CDOM pools allowing for general statements about the diagenetic state of CDOM 
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across different environments [Organelli et al., 2014; Stedmon and Markager, 2003]. Some 
work has suggested that S300:600 is a useful indicator of CDOM molecular weight [Stedmon 
and Nelson 2015], while the general understanding is that broad range SCDOM increases 
with photodegradation as chromophores are bleached, particularly in the UV region [Del 
Vecchio and Blough, 2002; Reche et al., 2000]. Optical properties of source material have 
been considered [Hansen et al., 2016; Visser, 1983]; however, much of the literature relies 
on optical observations of CDOM in a specific geographic region and relates the optical 
signal to known source waters without clearly disentangling the molecular basis of the 
optical signal or diagenetic state of the CDOM. Two major components of CDOM, humic 
acid and fulvic acid, display slopes of approximately 0.011 nm-1 and 0.019 nm-1 [Carder et 
al., 1989]. However, observed slope values across broad spectral ranges can vary above 
and below these benchmarks, suggesting that the complexity of material and its signal 
requires further attention. If possible, it is important to distinguish low molecular weight 
material such as phytoplankton exudates readily reincorporated into the food web from low 
molecular weight, recalcitrant material based on optical data and calculated metrics (e.g. 
S275:295) as these compounds constitute different roles in food web processes and carbon 
cycling. 

CDOM has been quantified from satellite remote sensing by estimating CDOM 
absorption (aCDOM) using empirical algorithms, semi-analytical algorithms or optimization 
routines such as neural networks [Ioannou et al., 2013; Mannino et al., 2008; Matsuoka et 
al., 2013; Stedmon et al., 2011]. Past work has shown relatively strong relationships 
between aCDOM and common CDOM compositional metrics, including S275:295 and lignin 
content [Fichot et al., 2016; Mannino et al., 2014]. Additionally, aCDOM shows a tight 
correlation with dissolved organic carbon (DOC) at the terrestrial-aquatic interface [Fichot 
and Benner, 2011], resulting in reliable relationships for estimating DOC delivery to 
coastal oceans from major river systems via ocean color remote sensing [Matsuoka et al., 
2013]. However, this relationship rapidly deteriorates as the terrestrial component of 
CDOM, shown to behave semi-conservatively with mixing [Stedmon and Markager, 
2003], diminishes and gives way to in situ processes that both degrade and produce CDOM. 
Open ocean environments do not display a relationship between CDOM and DOC [D'Sa 
and Kim, 2017; Nelson et al., 2010], while the percent contribution of CDOM to the total 
DOM pool can be quite variable across environments but is generally relatively small in 
the global oceans [Nelson and Siegel, 2013]. 

Maximizing CDOM compositional information that can be retrieved by optical 
methods will enhance our ability to track changes in the CDOM pool through autonomous 
and remote sensing platforms, providing a way to observe large scale changes in ocean 
biogeochemical processes and circulation [Nelson et al., 2010].  However, this first 
requires determination of what information regarding CDOM composition is garnered 
from a specific spectral range and fully utilizing the information contained within aCDOM 
spectra to optically estimate CDOM composition. To this end, Massicotte and Markager 
[2016] introduced a new methodology for fitting deviations from the traditional 
exponential model often observed in aCDOM spectra that are attributed to specific 
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chromophores. Additionally, this method allows for a more accurate basis of the SCDOM 
parameter as it better fits the entire aCDOM spectra. 

Here, we utilize aCDOM spectra available from public data repositories to address 
knowledge gaps that have evolved from an inconsistency in spectral range used. We relate 
several broad range SCDOM to S275:295, S350:400, and aCDOM at 350 nm (aCDOM(350)) to best 
interpret and define the efficacy of each of these parameters to estimate CDOM 
composition from aCDOM based on observations in the literature. We utilize the Gaussian 
decomposition approach of Massicotte and Markager [2016] to further characterize the 
CDOM pool and report differences between this approach and the standard exponential 
model traditionally used for fitting aCDOM spectra. Finally, we offer insight into what can 
be determined about CDOM composition from S350:400 and S350:550 to step toward defining 
a methodology that can be applied to hyperspectral, satellite remotely-sensed retrievals of 
aCDOM. 

1.2 Methods 

1.2.1 CDOM Absorption Spectra 

CDOM absorption spectra were obtained from NASA SeaWiFS Bio-optical 
Archive and Storage System (SeaBASS, https://seabass.gsfc.nasa.gov/) on April 13, 2016 
[Werdell et al., 2003]. Only data measured on a bench top spectrophotometer were utilized. 
The CDOM absorption spectrum is typically modeled using an exponential decay function: 

a
CDOM

(λ)=a
CDOM

(l0)e
-SE(λ- λ0)

 + K  (1) 

where l0 represents a reference wavelength for initializing the spectrum (nm), SE is the 
spectral slope coefficient for an exponential CDOM model (nm-1), and K is a constant 
addressing background noise and potential instrument bias (m-1), calculated as the average 
aCDOM from 690-700 nm (Fig. 1). Spectra were quality controlled by selecting spectra 
representing a broad quasi-exponential function: if the fit with Equation 1 displayed an r2 
> 0.9 (suggesting no contamination or instrumentation issues), spectra were kept for further 
analysis [Massicotte and Frenette, 2011].  

Deviations from the decaying expression in Eq. 1 can result from absorption by 
specific chromophores (e.g. lignin), and can vary in degree and location [Massicotte and 
Markager, 2016]. To detect regions where such deviations exist, spectra were fit with the 
standard exponential in Eq. 1 and then trimmed by removing data with residuals greater 
than the mean absolute residual multiplied by the weighting factor, C. C is dependent on 
the quality of the data (signal to noise ratio), the environment and spectral range considered 
and directly influences the number of residuals considered for Gaussian fitting by defining 
the threshold for excluding these points from the baseline exponential fit; we utilized a C 
of 1 to maintain consistency across spectra. With the remaining points, spectra were again 
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fit with Eq. 1 with the result defined as the baseline exponential. Massicotte and Markager  
[2016] utilized a spectral range from 240-700 nm with Gaussian fitting performed on 
residuals from 250-500 nm. The influence of spectral range on the value of SCDOM for an 
exponential model has been well established [e.g. Twardowski et al. 2004]. To determine 
the influence of spectral range on SCDOM using the Gaussian decomposition model, we 
considered spectral ranges of 240-700, 300-700 and 350-550 nm, resulting in spectral 
ranges of 240-500 nm, 300-500 nm and 350-500 nm for fitting Gaussian components. We 
found fitting beginning at 240 nm for spectral ranges below 300 nm fit absorption 
deviations likely due to lignin or lignin-derivatives better than beginning at 250 nm, the 
only significant deviation from the methodology as described by Massicotte and Markager 
[2016]. The optimal number of Gaussian components modeled for each spectrum was 
chosen based on minimizing the Bayesian information criterion (BIC) score, with the final 
equation represented as: 

a
CDOM

(λ)=a
CDOM

(l0)e
-SG(λ- λ0)

 + K + ∑ "#$
%
('()*)

,

,-*
,
+ /0

#12   (2) 

where SG (nm-1) is the spectral slope coefficient for a Gaussian decomposition CDOM 
model, φ (m-1) is the height of the Gaussian peak, µ (nm) is the position of the center of the 
peak, σ (nm) is the width of the peak and e are the residuals after fitting of the full model. 
An example spectra fitted with and without the Gaussian decomposition approach is shown 
(Fig. 1), illustrating the change in slope. For this approach, fitted K as described for Eq. 1 
is also used as a threshold for the minimum height of fitted Gaussian components to add 
certainty that the Gaussian components are fitting chromophores and not instrument noise. 
We also acknowledged that many different instruments with varying accuracy were used 
to obtain this large data set. Considering this, we calculated the mean K value across all 
measured spectra (0.0004) and applied this as a threshold value for fitting Gaussian 
components: if the spectra-specific K value was smaller than the mean K, the mean K was 
used for fitting Gaussian components; the spectra-specific K value was used for all other 
spectra. 

The inclusion of K in equations 1 and 2 is often debated, with many researchers 
considering it an unknown variable that has no physical basis. Others have pointed out its 
ability to account for instrument noise in regions of the spectrum that should have no, or 
very little, signal from CDOM absorption. We have included it in this analysis for several 
reasons: 1) many of the spectra that we considered had some noise at longer wavelengths 
(> 600 nm) within an otherwise good absorption spectra, suggesting some instrument noise 
in measuring a very low signal; 2) our analysis focuses primarily on the shape of the 
spectra, which is not altered by including a K term; 3) our aCDOM analyses are focused on 
shorter wavelengths (e.g. 350 nm) where the percent contribution of the K term to the 
overall signal analyzed is generally quite small (mean of 0.6%); and 4) K was used as the 
threshold for fitting Gaussian components, leading to stricter fitting. 

Spectral slope was retrieved for the following wavelength ranges: 275-295 nm, 
350-400 nm, 240-700 nm, 300-700 nm and 350-550 nm. We also considered spectral slope 
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from 300-600 nm, 350-600 nm, and 350-700 nm; however, slope values and Gaussian 
statistics for these spectral range were not significantly different from 300-700 nm and thus 
were not considered further. Throughout the manuscript, slope coefficient subscripts 
indicate fitting procedure (E for exponential decay with Eq. 1 and G for Gaussian with Eq. 
2) along with the spectral range of data utilized for the fit. For example, SG300:700 would 
indicate results from a fit with Eq. 2 from 300 to 700 nm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Example of exponential (Equation 1) and Gaussian decomposition fitting (Equation 2) of aCDOM 

spectra from the Chukchi Sea. The black line is the observed data, the blue dash-dot line is the exponential 
fit for the spectra from 240-700 nm (SE240:700=0.0178 nm-1), and the red dashed line is the Gaussian 
decomposition fit from 240-700 nm (SG240:700=0.0180 nm-1). Two Gaussian components were fitted to this 
spectra, with φ, µ and σ for each component indicated within the figure. 

1.2.2 Data Distribution 

 We focused on aggregating aCDOM spectra into biogeochemical provinces following 
Longhurst [2006] biogeochemical province designations (provided by VLIZ [2009]). We 
considered all 54 Longhurst biogeochemical provinces and aggregated all inland water 
samples into an ‘INLAND’ biogeochemical province, resulting in 55 potential regions. Of 
these, 35 were represented within the SeaBASS dataset: 34 Longhurst provinces and the 
INLAND province. To be considered for analysis, we required each region to contain 5% 
of the maximum number of samples found within the most sampled region. For example, 
the NASW province (U.S. east coast) contained the maximum number of samples at 3,942 
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µ
1
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σ
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for the 300-700 nm spectral range. Thus, all regions considered in the SG300:700 analyses 
contained at least 197 samples. Data availability allowed for the analysis of 6 provinces for 
the 240-700 nm spectral range, 16 provinces for 300-700 and 350-550 nm spectral ranges, 
and 23 provinces for 275-295 and 350-400 nm spectral ranges (Fig. 2). We considered 
S350:400 in all provinces analyzed for S275:295. 

Figure 2. Map of aCDOM observation locations for all spectral ranges considered: 350-550 nm (cyan, blue, 
black, red), 300-700 nm (blue, black, red), 275-295 nm (black, red), and 240-700 nm (red). The majority of 
INLAND samples are taken from rivers and lakes along the east and southeastern coast of the United States 
or from the Laurentian Great Lakes. Colored regions indicate Longhurst provinces used for analysis of spatial 
trends in the data set [Longhurst, 2006]. SATL, KURO, CHIN, NPSW, SSTC, ISSG and ANTA were only 
used for S350:400 and S275:295 analyses due to data restrictions described in Section 2.2. Following those 
restrictions, data points indicated here in uncolored regions are only used for aggregate slope comparisons 
depicted in Fig. 3a-c and are not used for any other analysis.  

 Absorption spectra were also considered within three depth classes defined as the 
first and second optical depths, calculated as 2.3 and 4.6 divided by Kd(490), respectively, 
and below the photic zone (BPZ), comprising depths greater than the second optical depth 
but less than 1500 m [Kirk, 1994]. The majority of spectra below 1500 m were sampled at 
the Bermuda Atlantic Times Series (BATS) site; hence, we imposed the 1500 m threshold 
to avoid a potential bias from deep water spectra in this region. The depth classes for each 
province were identified by the average light extinction coefficient at 490 nm, Kd(490), 
determined from MODIS-Aqua seasonal climatologies for each province. Seasonal 
Kd(490) was used to ensure samples from different seasons fell within a similar underwater 
light field to ensure photodegradation rates are relatively constant within a given depth 
range used to group samples. Thus, a boreal winter sample near the lower limit of the first 
optical depth in a province could be a few meters deeper than a boreal summer sample near 
the upper limit of the second optical depth in the same province. Biogeochemical provinces 
for each depth class were included in the analysis using the same 5% of maximum sampling 
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criterion described above for the complete dataset. For most analyses, only the first optical 
depth is presented in the figures due to space constraints. Additional depth data for these 
analyses can be found in Grunert et al. (2018). Seasonal distribution of data within the 
provinces did not allow representation across all four seasons, thus, results focus on spatial 
trends in CDOM metrics. 

1.2.3 Analysis of CDOM Metrics 

Spectral slope calculated for the Gaussian decomposition and standard exponential 
methodologies were compared using linear regression. SG240:700, SG300:700 and SG350:550 were 
compared to SE275:295 and SE350:400 to determine their potential for estimating CDOM 
molecular weight, source, and degradation state using linear regression. Non-linear least 
squares fits were used to assess the ability of log-normalized aCDOM(l) at wavelengths of 
350, 412, and 443 nm to estimate SG240:700, SG300:700, SG350:550, SE350:400 and SE275:295. 

 We sought to determine if observed differences in SCDOM between biogeochemical 
provinces were significant by applying a one-way analysis of variance (ANOVA) followed 
by a least significant difference multiple comparison of means test. The ANOVA was 
applied to SCDOM categorized by biogeochemical province to determine if the mean slope 
values between biogeochemical provinces were significantly different (p < 0.01). The least 
significant difference multiple comparison of means test was then applied using the results 
of the ANOVA to determine if the distribution of spectral slope values is significantly 
different (p < 0.05). It is recognized the least significant difference (LSD) methodology 
offers looser statistical thresholds for significance than the Tukey-Kramer methodology 
[Hayter, 1986]. However, as an exploratory exercise aimed at defining potential 
differences, the more liberal LSD methodology was deemed more suitable here. 

 The results of the multiple comparison of means test are presented on bioplots as a 
way to visualize the degree of similarity in SCDOM between different biogeochemical 
provinces. A line between boxes on a bioplot indicates that observed SCDOM values between 
the considered provinces is statistically similar, while no connection indicates that 
observed SCDOM values between considered provinces are statistically unique. These results 
are further clarified within maps of the regions displaying which provinces are statistically 
similar and how similar (the number of related provinces) within groups displaying 
connectivity (statistical similarity). The bioplots illustrate which provinces displayed 
SCDOM values that are explicitly similar while the maps give a global representation of 
provinces that we consider as affiliated (all provinces are related to at least one other 
province within that group). 

 Average numbers of Gaussian components were calculated for provinces and by 
depth to determine the likelihood of fitting peaks within a province. While equation 2 
requires a discrete number of components for fitting a single spectra, these non-discrete 
averages are derived from the number of fitted Gaussian components across all spectra for 
that province or depth range to indicate which regions are better fit using Gaussian fitting. 
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1.3 Results 

1.3.1 Comparison of CDOM Models 

We calculated the standard exponential slope for all spectra considered and 
compared them to slope values calculated using the Gaussian decomposition approach 
(Fig. 3). For all spectral ranges considered, the majority of Gaussian decomposition fitting 
resulted in same or larger slope values. For S240:700, the mean difference, SG240:700 – SE240:700, 
was 0.0005 nm-1 while the absolute differences for all spectra considered ranged from 0-
0.0085 nm-1 (Fig. 3a). For S300:700, the mean difference was 0.0012 nm-1 while the absolute 
differences for all spectra considered ranged from 0-0.0279 nm-1 (Fig. 3b). For S350:550, the 
mean difference was 0.0002 nm-1 while the absolute differences for all spectra considered 
ranged from 0-0.0039 nm-1 (Fig. 3c). The sample size for S240:700 fitting was significantly 
smaller; thus, differences may be more significant if more spectra across more provinces 
are considered. 

Figure 3a-c. Probability density functions comparing SE (equation 1) vs. SG (equation 2) for (a) 240-700 nm, 
(b) 300-700 nm and (c) 350-550 nm spectral ranges. Dashed lines indicate a 1:1 relationship. 

 When considering the spectral ranges investigated, differences between SG240:700 
and SE240:700 were smallest for inland and coastal provinces and largest for open ocean 
provinces (Fig. 4a), although this comparison relies on only one open ocean province 
(NPTG). Absolute differences between SG300:700 and SE300:700 did not show a distinct spatial 
trend, as both NWCS (coastal) and NASW (open ocean) contained the largest absolute 
differences between the methodologies (0.025 and 0.0279 nm-1, respectively). However, 
overall mean differences between SG300:700 and SE300:700 were smallest for inland and coastal 
regions and increased in open ocean regions, while environments characterized by a greater 
magnitude of aCDOM (Arctic, inland and coastal waters) more frequently displayed no 
difference in calculated slope between the two methodologies (Fig. 4b). This is not 
surprising, as the Gaussian peaks fitted in the 300-700 and 350-550 nm spectral ranges for 
these environments were relatively small. Following this expectation, differences between 
SG350:550 and SE350:550 were quite small overall and did not display any regional trends (Fig. 
4c). 

 

b a c 
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Figure 4. Mean difference between SG and SE for each province in the (a) 240-700 nm, (b) 300-700 nm and 
(c) 350-550 nm spectral ranges. 
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1.3.2 Spatial Trends in Slope Values 

1.3.2.1 SE275:295/E350:400 

SE275:295 in the first optical depth had a mean value of 0.036 nm-1 with a range in 
mean values of 0.035 nm-1 across all provinces in the first optical depth (Fig. 5a,f; Grunert 
et al. 2018). SE275:295 was quite variable across all biogeochemical provinces, with coastal 
waters displaying smaller values, typically 0.02-0.03 nm-1. Oceanic, Atlantic regions 
displayed larger values relative to all Pacific regions except NPSW. Southern Ocean 
regions displayed smaller values relative to the Atlantic and Pacific, with APLR displaying 
a mean SE275:295 of 0.027 nm-1. SE275:295 decreased with depth for all regions except NWCS, 
CARB, KURO and SANT (Grunert et al. 2018). The range in values was relatively 
consistent between the second optical depth and below the photic zone, with both depth 
zones displaying a much smaller range in mean values than the first optical depth, 0.018 
and 0.019, respectively. SE350:400 values displayed less variability than SE275:295, with a mean 
value of 0.018 nm-1 and a range of mean values of 0.01 nm-1 across all provinces in the first 
optical depth (Fig. 5b,g; Grunert et al. 2018). This spectral range observed the most 
consistent trend in decreasing slope with depth across regions (Grunert et al. 2018) with 
few provinces deviating slightly from this trend (ISSG, SPSG, PEQD, CCAL and SATL). 

1.3.2.2 SG240:700 

 SG240:700 had a mean value of 0.020 nm-1 and a mean range of 0.019 nm-1 across all 
provinces in the first optical depth (Fig. 5c; Grunert et al. 2018). Differences between 
regions that are strongly influenced by terrestrial CDOM (inland, coastal and Arctic waters) 
displayed markedly different slope values from those observed in NPTG. Only 3 provinces 
(BPLR, BERS, and NWCS) had samples in all 3 depth ranges; for those provinces, slope 
values were relatively constant or increased slightly with depth. 

1.3.2.3 SG300:700 

 SG300:700 displayed slightly less variability in mean slope, with a mean value of 
0.021 nm-1 and a mean range of 0.008 nm-1 across all provinces in the first optical depth 
(Fig. 5d; Grunert et al. 2018). INLAND spectra displayed a relatively narrow slope range, 
with the bulk of observations between 0.01 and 0.02 nm-1 regardless of spectral range; 
however, the absolute range was quite broad (<0.01-~0.05 nm-1). Coastal and sub-polar 
regions displayed mean SG300:700 values £ 0.020 nm-1, with BPLR (Arctic Ocean) also 
falling below 0.020 nm-1. Minimum SG300:700 was consistently below 0.015 nm-1 for all 
regions, with most regions falling below 0.010 nm-1. Maximum SG300:700 values showed 
considerably more variability, with SG300:700 displaying the largest absolute range of all 
spectral ranges considered. While many studies observe a decrease in broad range SCDOM 
with depth, some regions considered here maintained relatively consistent SG300:700 across 
depth zones including NWCS, NATR and BERS. Regions that displayed an increase in 
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slope with depth include CARB and SANT. The range in SG300:700 was generally consistent 
or showed a decline with depth. 

1.3.2.4 SG350:550 

 SG350:550 values displayed similar variability to SG300:700, with a mean SG350:550 of 
0.016 nm-1 and a mean range of 0.007 nm-1 across all provinces in the first optical depth 
(Fig. 5e; Grunert et al. 2018). While open ocean regions displayed larger SG300:700 values, 
coastal regions generally displayed larger SG350:550 values. SG350:550 was more consistent 
with depth within regions than S300:700. NASW, WTRA, CARB, NPTG, MONS and APLR 
SG350:550 decreased with depth while SG350:550 increased with depth in CCAL, PEQD, SPSG 
and SANT, albeit comparatively less than regions where SG350:550 decreased with depth. 
SG350:550 behaved similarly to S350:400, however, with less range in mean values and less 
consistency in trends with respect to depth. 

1.3.2.5 Spatial Relationships 

The relationship between SCDOM values and biogeochemical province was 
considered for SE275:295, SE350:400, SG300:700 and SG350:550. Provinces with statistically similar 
SCDOM values are presented as clusters where each province presented displays similar 
observed SCDOM values to at least one other province. 

SE275:295 spatial relationships were unexpected, as provinces were not clustered 
within specific oceans or basins and displayed 4 distinct clusters (Fig. 6). BERS, KURO 
and APLR displayed unique SE275:295 values relative to all other provinces. SE350:400 showed 
the greatest similarity between spectral slope values across provinces, with two distinct 
clusters and APLR as an outlier (Fig. 7). SG300:700 showed the greatest similarity across 
provinces, suggesting that a lack of contribution from wavelengths below 300 nm and a 
broad spectral range lead to greater similarities between disparate CDOM pools (Fig. 8). It 
should be noted that if Laurentian Great Lakes stations are excluded from the SG300:700 
analysis, INLAND is statistically unique from all other regions as well. SG350:550 showed 
the most connectivity between proximal provinces, although none of the spectral ranges 
appear to be related primarily by province proximity in the global ocean (Fig. 9). 

For all parameters considered except SE275:295, SCDOM similarity increased with 
depth. For SG300:700 and SG350:550, this resulted in only one bioplot cluster (SG300:700) or one 
bioplot cluster with APLR (both) and CCAL (second optical depth) as outliers (SG350:550). 
For all spectral ranges, the degree of uniqueness in mean slope and slope distribution 
decreased with depth. 

1.3.3 Gaussian Components 

 The number of Gaussian components fit was highly dependent on the spectral range 
considered (Fig. 10). For 240-700 and 350-550 nm, fewer Gaussian components were fit  
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Figure 5. Spectral slope frequency distribution for the first optical depth of each province with spectral 
range for each row as (a,f,k) SE275:295, (b,g,l) SE350:400, (c,h) SG240:700, (d,i) SG300:700and (e,j) SG350:550. Missing 
histograms indicate provinces that did not have enough spectra measured down to 240 nm to be considered 
here. 

due to lignin peak fitting (240-700) dramatically improving the goodness of fit and 
relatively small peak height for components located in the fitting range used for 350-550 
nm. 

1.3.3.1 Spatial Trends in Gaussian Components: SG240:700 

The minimum number of Gaussian components fitted for all regions in the first 
optical depth for SG240:700 was 1, with the maximum number ranging from 4 to 7 for 
INLAND and BPLR, respectively (Fig. 10a; Grunert et al. 2018). The range of fitted 
components stayed the same or decreased with depth (data not shown). For the INLAND 
province, it appears that the goodness of fit was improved drastically by fitting a lignin 
peak, to the point that fitting peaks at longer wavelengths did not produce a statistically 
better fit.  

1.3.3.2 Spatial Trends in Gaussian Components: SG300:700 

 The minimum number of Gaussian components fitted for each province in the first 
optical depth for SG300:700 was 0 or 1, with a maximum number of fitted components ranging 
from 2 to 10 for APLR and NWCS, respectively (Fig. 10b; Grunert et al. 2018). Overall, 
most provinces were fit with less Gaussian components with depth (data not shown). APLR 
was an outlier across all depths with the majority of spectra not fitted with any Gaussian 
components. BERS and BPLR displayed the most fitted components with the number of 
fitted components increasing with each depth zone considered. Atlantic regions 
consistently had a mean of 2 or more Gaussian components, while NWCS and CARB had 
an average of 1.7 and 1.8 Gaussian components, respectively. Pacific regions had from 1.1-
1.5 Gaussian components on average. The number of fitted Gaussian components typically 
decreased with depth in Atlantic regions while the number of Gaussian components in 
Pacific regions were relatively consistent with depth. 
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1.3.3.3 Spatial Trends in Gaussian Components: SG350:550 

 The minimum number of Gaussian components fitted for each province in the first 
optical depth for SG350:550 was 0 or 1, with a maximum number of fitted components ranging 
from 1 to 8 for APLR and WTRA, respectively (Fig 10c; Grunert et al. 2018). Overall, 
most provinces were fit with the same or less Gaussian components with depth (data not 
shown). APLR remained an outlier across all depths in this spectral range as well. BERS 
and BPLR were fitted with 1 and 0.8 mean components in the first optical depth with little 
change with depth. This is in stark contrast to fitting from 300-700 nm, suggesting that 
300-350 nm is an important spectral range to consider in this region and contains more 
prominent deviations from the baseline exponential model in this spectral range. 

 
Figure 10. Number of Gaussian components indicated by color in the first optical depth for (a, d) 240–700 
nm, (b, e) 300–700 nm, and (c, f) 350–550 nm. 

1.3.3.4 Spatial Trends in Gaussian Component Spectral Location: SG240:700 

 Mean Gaussian component location in the first optical depth across all regions was 
317.8 nm, with a minimum and maximum mean location of 286.9 nm for INLAND and 
350.6 nm for NPTG (Fig. 11a-c; Grunert et al. 2018). Fitting of spectra was dominated by 
fitting of the lignin peak with the mean first Gaussian component location occurring at 276 
nm for all 6 biogeochemical provinces considered. The location of the first component was 
strongly influenced by sample source and proximity to terrestrial material, as the first 
Gaussian component location was always below 300 nm for INLAND, NWCS, CARB and 
BERS while the first Gaussian component location ranged up to 385 and 381 nm for BPLR 
and NPTG, respectively. The location of the first peak dominated the location of peaks 
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across all provinces, while the spectral region from 420-425 nm was also frequently fitted 
in this spectral range. The location of fitted peaks was relatively consistent between depth 
ranges (Fig. 11a-c). 

1.3.3.5 Spatial Trends in Gaussian Component Spectral Location: SG300:700 

Mean Gaussian component location in the first optical depth for SG300:700 across all 
regions was 415 nm (Fig. 11d-f), with a minimum and maximum mean location of 366 nm 
for INLAND and 429 nm for BERS (Grunert et al. 2018). INLAND and NASW were the 
only regions that were statistically unique in their mean location based on one-way 
ANOVA and multiple comparison of means tests, with a mean location of 397 nm in 
NASW. All other regions had a mean location between 413 and 429 nm. For INLAND 
spectra, the majority of Gaussian components were fitted from 330-350 nm (57%). NASW 
Gaussian components did not display a bias towards a particular spectral region, with 
nearly 75% of peaks fitted between 365-425 nm. For all regions other than INLAND, 
spectral regions most frequently fitted included 370-375 nm (4%) and 410-440 nm (35%), 
with 425-430 nm displaying the most fitted peaks at 9% of all peaks fitted. The number of 
fitted peaks significantly decreased below 360 nm (Fig. 11d). 

In the second optical depth, the most frequently fitted region was 415-435 nm with 
34% of fitted peaks occurring in this region (Fig. 11e). 370-375 nm was an important 
spectral range with 5% of peaks fitted in this region. Below the photic zone, 415-430 nm 
contained 17% of all fitted peaks and 370-375 nm was an important spectral range with 
6% of fitted peaks (Fig. 11f). In this depth zone, 390-415 nm was also important, with 13% 
of all peaks fitted in this region. 

1.3.3.6 Spatial Trends in Gaussian Component Spectral Location: SG350:550 

Mean Gaussian component location in the first optical depth for SG350:550 across all 
regions was 424 nm, with a minimum and maximum mean location of 395 nm for NASW 
and 444 nm for BERS. NASW was the only region that had a statistically unique mean 
peak location. All other regions had a mean location between 413 and 444 nm. However, 
INLAND Gaussian components were most frequently fitted from 355-360 nm (22%) and 
490-495 nm (24%), resulting in a mean location of 431 nm. NASW Gaussian components 
did not display a bias towards a particular spectral region, with over 80% of peaks fitted 
between 360 and 425 nm. For all regions other than INLAND, spectral regions most 
frequently fitted included 355-370 nm (16%) and 410-430 nm (28%), with 410-415 nm 
displaying the most fitted peaks at 10% of all peaks fitted (Fig. 11f). 

In the second optical depth, the most frequently fitted region was 410-420 nm with 
31% of fitted peaks occurring in this region. A local peak in the distribution of fitted 
components occurred from 390-395 nm with 6% of all peaks fitted in this spectral region 
(Fig. 11g). Below the photic zone, 410-420 nm contained 29% of all fitted peaks while 
405-425 nm contained 44% of all fitted peaks (Fig. 11h). 390-395 nm was an important  
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spectral range with 9% of all fitted peaks. In this depth zone, relatively few peaks were 
fitted after 430 nm. 

1.3.3.7 Trends in Gaussian Component Metrics 

 Gaussian peak height, φ, was found to correlate quite well with aCDOM(350) 
(r2=0.88), although the distribution appears bifurcated with a break-point between 
aCDOM(350) £ 15 m-1 (r2=0.76) and aCDOM(350) > 15 m-1 (r2=0.90) (Grunert et al. 2018). 
Both relationships suggest a large dependency between φ and the magnitude of aCDOM in 
the system. We accounted for this effect by normalizing φ with the modeled aCDOM at the 
wavelength associated with the Gaussian peak location as described in the Methods section. 
Normalized φ showed that open ocean Gaussian components are more prominent relative 
to the magnitude of CDOM in the system when compared to terrestrial components, with 
INLAND mean normalized φ=0.03 while ocean provinces had a mean normalized φ=0.1 
(data not shown). For SG300:700 (excluding INLAND), the first, second and BPZ depths were 
fitted with an average of 1.8, 1.7 and 2.2 Gaussian components, respectively. For SG350:550 
(excluding INLAND), the first, second and BPZ depths were fitted with an average of 1.0, 
1.2 and 1.8 Gaussian components, respectively. 

1.3.4 CDOM Metric Comparisons 

1.3.4.1 Comparison of Broad Range Slopes to SE275:295/SE350:400 

The influence of capturing absorption below 300 nm and the likely influence of 
lignin for relating broad range spectral slopes to absorption from S275:295 is clear, as regions 
dominated by terrestrially-sourced CDOM show tight relationships between SE275:295 and 
SG240:700 in the first optical depth (r2=0.83-0.95; Grunert et al. 2018). Relationships between 
SE275:295 and SG300:700 were generally poor while relationships between SE275:295 and SG350:550 
entirely deteriorate for most regions and depths (r2 < 0.2; Grunert et al. 2018), suggesting 
a distinct difference in the processes these spectral ranges describe. Notably, APLR aCDOM 
spectra displayed consistent slope values across diverse spectral ranges. 

 As expected, SE350:400 related inversely to broad slope ranges relative to SE275:295. 
Most SG240:700 correlations were relatively poor (r2=0-0.34) with INLAND and CARB 
displaying relationships of 0.49 and 0.82, respectively, suggesting a broad influence of 
absorption by lignin or lignin-derivatives in these regions. Overall, SE350:400 showed distinct 
trends from spectral ranges capturing terrestrial features, suggesting a utility for monitoring 
in situ processes within this spectral range (Grunert et al. 2018).  

1.3.4.2 Comparison between aCDOM and SCDOM 

 We considered relationships between aCDOM at 350, 412, and 443 nm and the 
calculated slope values to determine the feasibility of using the magnitude of aCDOM at a 
reference wavelength to estimate SCDOM. 412 and 443 nm, or nearby wavelengths, have 
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applications to heritage satellite sensors while 350 nm is the shortest wavelength 
anticipated to be available for the PACE sensor, providing maximum signal-to-noise for 
retrieving aCDOM while also avoiding overlap with phytoplankton pigments, including 
mycosporine-like amino acid absorption peaks around 330 and 360 nm [Pavlov et al., 
2014]. Relationships were best fit using a non-linear least squares exponential fit. The 
goodness of fit did not change significantly between different reference wavelengths; 
subsequently, we only focus on aCDOM(350) in anticipation of future sensor capabilities. 

 S275:295 had the strongest relationships with aCDOM(350), although APLR showed a 
poor relationship (r2 < 0.15). Relationships between aCDOM(350) and SG300:700 were highly 
variable, with SANT the only station that showed strong to relatively strong relationships 
across all depths (r2 > 0.7). S350:400 and SG350:550 did not correlate with aCDOM(350) for almost 
all regions and depths considered (Grunert et al. 2018). 

We also assessed the error introduced in satellite-derived estimates of aCDOM(412) 
by using an assumed SCDOM value. CDOM has traditionally been considered alongside non-
algal particulate (NAP) material, as both have absorption spectra that follow an 
approximately exponentially increasing with decreasing wavelength relationship. These 
absorption terms, aCDOM and aNAP, are combined into a single term, colored detrital matter 
(CDM) absorption such that aCDM=aCDOM+aNAP and aCDM has an average spectral slope 
(SCDM) representative of the slope and percent contribution of each component. The GSM 
algorithm and the Quasi-Analytical Algorithm (QAA) assume an SCDM of 0.015  and 0.013-
0.017, respectively [Lee et al., 2002; Maritorena et al., 2002]. Global observations of aNAP 
suggest it accounts for 10-20% of the aCDOM signal, and a typical spectral slope for aNAP is 
0.011 nm-1 with a range of values much smaller than SCDOM [Dong et al., 2013; Hoepffner 
and Sathyendranath, 1993; Roesler et al., 1989]. Assuming an SCDOM of 0.015 nm-1, a 
contribution of 10% and 20% of aNAP with spectral slope of 0.011 nm-1 results in an 
assumed SCDOM of 0.016 and 0.0154 nm-1, respectively. We assessed the percent error 
between mean aCDOM(412) observed for each province and aCDOM(412) calculated for the 
province using the mean aCDOM(443) and these assumed SCDOM values. Error rates were 
similar when assuming 10% and 20% contributions from aNAP to aCDOM. When assuming a 
20% contribution and an SCDOM of 0.0154 nm-1, estimated aCDOM(412) error varied from 4-
22% of the observed mean aCDOM(412) (Fig. 12). 

1.4 Discussion 

1.4.1 CDOM Models 

Bias introduced in the SCDOM parameter from varying the spectral range has been 
widely recognized for some time [Twardowski et al., 2004]. Despite this understanding, 
only a few narrow range spectral slope parameters have been adopted consistently, S275:295 
and S350:400 [Helms et al., 2008], with broad range slopes highly variable throughout the  
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Figure 12. Percent error between mean observed aCDOM(412) for each province and 
calculated aCDOM(412) using mean observed aCDOM(443) and an assumed SCDOM of 0.0154 
nm-1. 

literature. Regardless of the CDOM model used, exponential or Gaussian decomposition, 
the bias due to spectral range considered remains an issue. SCDOM differences between the 
exponential CDOM and Gaussian decomposition models are relatively minor for most 
spectra, with SCDOM values generally higher for the Gaussian decomposition model. 
However, differences between the models suggest that removing deviations from the 
exponential model and modeling these features with Gaussian curves allows for a better 
characterization of the underlying exponential signal and a better fit of the measured 
CDOM spectra through improved r-squared and RMSE. This, in turn, will allow for more 
consistent comparisons of SCDOM from the same spectral range and a stronger basis for 
estimating CDOM composition optically [Del Vecchio and Blough, 2004a]. In particular, 
we found the Gaussian decomposition method to be crucial for accurately modeling 
CDOM spectra strongly influenced by terrestrial material. 

1.4.2 SCDOM 

 Various spectral ranges have been used to characterize SCDOM, with narrow range 
slopes typically focusing on specific attributes related to CDOM source, diagenetic state 
and molecular weight [Helms et al., 2008; Spencer et al., 2008]. The basis for linking 
optical properties to estimates of CDOM composition has strong backing in the literature 
[Boyle et al., 2009; Coble, 2007; Hernes and Benner, 2003; Kowalczuk et al., 2005; 
Wünsch et al., 2015]. Here, we assessed how broad spectral range SCDOM relates to common 
optical indicators of CDOM composition (e.g. aCDOM(l), S275:295) and varies across spectral 
ranges, ocean biogeochemical provinces and depth ranges. 
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 CDOM absorption at a reference wavelength is often used as an indicator of CDOM 
composition as it relates well with SE275:295 and lignin concentration [Fichot et al., 2016; 
Mannino et al., 2014]. Past studies have shown strong relationships between aCDOM and 
SCDOM along transects from lower salinity coastal waters to higher salinity offshore waters 
where the range in aCDOM(l) typically varies by orders of magnitude [Kowalczuk et al., 
2006; Pavlov et al., 2016; Stedmon and Markager, 2003], while a study in the Arctic Ocean 
found that CDOM absorption and SCDOM do not relate across marine and terrestrially-
derived CDOM pools [Granskog et al., 2012]. For our study, SE275:295 displayed relatively 
strong relationships with aCDOM(350) for most provinces (r2 > 0.5). Notably, APLR 
displayed a poor relationship between aCDOM(350) and SCDOM across all spectral ranges, 
while most provinces displayed highly variable or poor relationships between aCDOM(350) 
and S350:400. Relationships between broad range SCDOM and aCDOM were highly variable and 
were generally poor, even within the INLAND province where variability in aCDOM(350) 
is high across similar SCDOM  values, an observation also seen by Meler et al. [2016] . We 
consider these inconsistencies within the literature and our findings as representative of a 
decoupling between aCDOM(l) and SCDOM in systems that display higher variability in one 
parameter over the other or when data sets are not taken within a single sampling period. 
Open ocean CDOM has been characterized as a mix of degraded terrestrial material and 
contributions from in situ production [Andrew et al., 2013], suggesting that spectral shape 
due to CDOM composition is reflected by varying contributions from these processes with 
a low magnitude of aCDOM(350) across spectra considered for these provinces. We 
hypothesize that within oceanic regions with little terrestrial influence, process-specific 
SCDOM variability (e.g. photodegradation and alteration by the microbial community) is not 
necessarily reflected in aCDOM(350) values at different times. These degradation processes 
occur regardless of the amount of CDOM; thus, an aCDOM(350) value of 0.1 m-1 could be 
affiliated with a spectral shape consistent with microbial alteration of the CDOM pool or 
with a spectral shape consistent with photodegraded terrestrial material depending on the 
time and/or location sampled. This is a potential bias of ship-based sampling that should 
be accounted for when attempting to accurately estimate aCDOM from satellite-based remote 
sensing.  

 Spatial trends across all spectral ranges indicate that SG is quite variable across the 
global ocean (Fig. 5). Typically, global distributions of CDOM are presented as satellite-
derived climatologies of colored dissolved and detrital matter (CDM) absorption (aCDM), 
where non-algal particulate (NAP) absorption (aNAP) and CDOM are retrieved together and 
aNAP typically accounts for <20% of CDM in the global ocean [Nelson et al., 1998]. These 
climatologies typically display low aCDM(l) in subtropical ocean gyres and higher aCDM(l) 
along continental margins, the equator, and high latitudes [Siegel et al., 2005]. SG did not 
follow spatial patterns observed in satellite observations of aCDM for any spectral range 
considered. 

Estimating aCDOM from satellite radiometry requires assuming SCDOM/CDM or 
estimating aCDOM by parameterizing non-algal particulate absorption (aNAP) through 
empirical relationships and treating aCDOM as the residual [Matsuoka et al., 2013]. Attempts 
to estimate SCDOM directly have relied on removal of the aNAP signal and adjusting an 
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initially-assumed SCDOM using ratios of remotely-sensed reflectance [Dong et al., 2013]. 
We found that assuming an SCDOM of 0.0154 nm-1, equivalent to a 90% contribution of 
aCDOM to the aCDM signal [Nelson et al., 2010], and using aCDOM(443) results in errors in 
aCDOM(412) of 4-22% relative to the average aCDOM(412) observed in the provinces, 
suggesting that the assumed values or starting points used for SCDOM should be regionalized 
to reduce uncertainty (Fig. 12). 

Retrieving SCDOM independently without assumptions would be a first step towards 
estimating CDOM composition through a direct, rather than parameterized, observation. 
SE350:400 can potentially be retrieved using PACE. However, we found clearer separation 
between regions using SG350:550, suggesting that accounting for a broader spectral range and 
Gaussian components within that range draws sharper contrasts between distinct CDOM 
pools in the global ocean. Neither SE350:400 or SG350:550 related well with SE275:295; thus, both 
will likely be poor proxies for evaluating terrestrial contribution and molecular weight 
[Helms et al., 2008]. 

Biogeochemical models assume an SCDOM slope [Xiu and Chai, 2014] with some 
models accounting for microbial and photodegradation of CDOM over appropriate time 
scales [Dutkiewicz et al., 2015]. While the inclusion of optical parameters in global 
biogeochemical ocean models is a recent development, further partitioning the spectral 
properties of CDOM by region would enhance the accuracy when modeling the underwater 
light field. Past studies have found changes in CDOM spectral characteristics with depth 
to be significant [Hickman et al., 2010; Pérez et al., 2016]; we found changes in mean 
CDOM spectral characteristics to change up to 0.034, 0.02, 0.008 and 0.009 nm-1 between 
biogeochemical provinces while changes across depth ranges within a given 
biogeochemical province varied up to 0.016, 0.003, 0.005 and 0.004 nm-1 for SE275:295, 
SG240:700, SG300:700, and SG350:550, respectively. While spatial variability in SCDOM were 
greater between provinces than variability by depth within provinces, SE350:400 displayed 
ranges up to 0.007 nm-1 between provinces and by depth within provinces. From this, we 
suggest that in situ production pathways for CDOM are more variable by depth than across 
global ocean provinces. 

 We observed differences between slope values measured across the spectral ranges 
for each province, suggesting that each spectral range does not convey the same 
information about CDOM composition. To understand what could be determined about 
CDOM composition from each spectral range, we considered how SG240:700, SG300:700 and 
SE350:550 related to SE275:295, which is regarded as an indicator of source, molecular weight 
and photobleaching of CDOM [D'Sa et al., 2014; Helms et al., 2008], and SE350:400, a slope 
range less entrenched in the literature but indicative of photobleaching and likely microbial 
processing and production of CDOM [Helms et al., 2013; Helms et al., 2015; Matsuoka et 
al., 2015]. We found that SE350:400 can characterize in situ production and degradation of 
CDOM with potential links to microbial processes [Matsuoka et al., 2015; Nelson et al., 
2004; Seidel et al., 2015] as this parameter varied throughout the global ocean and 
consistently increased with depth. SG240:700 is strongly correlated with SE275:295 in most 
regions (r2=0.48-0.95, excluding BERS) suggesting that wavelengths below 300 nm 
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strongly influence SCDOM when calculated using these wavelengths. SG300:700 displayed 
variable relationships with SE275:295 (r2=0-0.90) and SE350:400 (r2=0.01-0.86), suggesting that 
this parameter is largely dependent on local processes. Typically, a region characterized by 
a poor relationship between S300:700 and SE275:295 displayed a strong relationship between 
S300:700 and SE350:400 (e.g. BPLR). A strong relationship with each parameter would be 
expected if S300:700 represents CDOM composition in a similar manner to SE275:295 or 
SE350:400. However, considering that a consistent trend with one over the other was not 
observed, it is likely that SG300:700 blurs characteristics of each into a single parameter that 
may not be particularly effective at characterizing the CDOM pool except under ideal 
circumstances such as a single, dominant process contributing to the CDOM pool. Thus, 
past work that has found potential relationships between molecular weight and SG300:600, a 
parameter we found to behave quite similarly to SG300:700, may be contingent on the 
environment [e.g. Stedmon and Nelson 2015]. 

Considering the variability and trends in slope for the different spectral ranges and 
relationships with SE275:295, it is likely that SG350:550 will be sensitive to a smaller suite of 
processes than spectral ranges that extend down to or below 300 nm. While SG350:550 could 
be useful for accurately modeling aCDOM above 350 nm, it appears to be limited for 
extending aCDOM lower than 350 nm. SG350:550 showed greater differentiation between 
biogeochemical provinces while maintaining a strong relationship with SE350:400 in most 
provinces. Few studies have reported spectral slope from 350-550 nm to our knowledge 
[Hancke et al., 2014; Kowalczuk et al., 2006], making it difficult to directly assess what 
SG350:550 estimates about CDOM composition. We propose that SE350:400 is a better metric 
for tracking compositional changes in the CDOM pool affiliated with photodegradation 
and in situ production of CDOM as suggested by Helms et al. [2013, 2015]. However, 
SG350:550 displayed greater uniqueness between provinces while SE350:400 displayed more 
consistent trends with depth across all spectral ranges. If these trends are consistent in 
future datasets, we propose that SG350:550 will be an ideal parameter for directly estimating 
compositional changes in autochthonous CDOM from hyperspectral ocean color data while 
changes in SE350:400 will be indicative of vertical transport of unique CDOM or distinct in 
situ production pathways. Based on previous studies, aCDOM(l) will likely remain a useful 
parameter for estimating terrestrial CDOM contributions from hyperspectral satellite 
observations [Fichot et al., 2014; Mannino et al., 2014]. These parameters appear to relate 
well with oceanic, in situ processes with the potential for tracking vertical movement of 
the CDOM pool with the added benefit of estimating CDOM composition. 

1.4.3 Gaussian Components 

The spectral range used to fit aCDOM strongly impacted the number of Gaussian 
components fitted. When the first absorption peak was below 300 nm, presumed to be 
lignin [McKnight and Aiken, 2010], the goodness of fit increased so significantly that 
smaller peaks at longer wavelengths that were fitted in the 300-700 nm spectral range were 
no longer fitted. Fitting from 300-700 nm resulted in the most peaks fitted for all provinces, 
while 350-550 nm fitted fewer peaks than 300-700 nm. In waters where lignin is a strong 
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or moderate contributor to aCDOM below 300 nm, fitting from 240-500 nm, then fitting from 
300-500 nm, may be a better approach, although blending models could become an issue. 
The majority of waters sampled to 240 nm in the SeaBASS dataset occurred in waters that 
historically have a strong terrestrial component [Benner et al., 2005; D'Sa et al., 2014; 
D’Sa and DiMarco, 2009; Del Vecchio and Blough, 2004b], precluding a thorough analysis 
of the 240-700 nm spectral range across the full range of oceanic conditions observed in 
the entire SeaBASS dataset. However, SE275:295 suggests that the trend in spectral slope 
values that account for aCDOM below 300 nm prevails in the global oceans. For spectra fitted 
with a peak below 300 nm, mean peak location was 286 nm, suggesting that SE275:295 is 
strongly influenced by the shape of the Gaussian component, if present, rather than the 
underlying exponential curve. It is likely that the large, complex molecular structure of 
lignin and the absorption peak associated with lignin drive the relationship between 
SE275:295 and CDOM molecular weight [McKnight and Aiken, 2010]. Additionally, we 
observed a shift in the location of the lignin absorption peak from terrestrial waters to 
oceanic waters (Fig. 11a) consistent with photodegradation of this component [Del Vecchio 
and Blough, 2004a]. 

Absorption peaks at wavelengths less than 300 nm can extend beyond these 
wavelengths through a complex process of charge-transfer interactions in the CDOM pool 
[Del Vecchio and Blough, 2004a]. For waters strongly impacted by terrestrial material and 
displaying a low S275:295 spectral signature, the first Gaussian component occurred at a 
much smaller wavelength in the spectra. Past studies have shown that terrestrial material 
absorption is dominated by lignin which absorbs below 300 nm [McKnight and Aiken, 
2010; Spencer et al., 2008]; however, the deviation from the baseline associated with this 
peak extends beyond 300 nm [Fichot et al., 2016], resulting in a distortion of S300:700 in 
these waters. Fitting Gaussian peaks provides a method to pick out unique components 
within the CDOM pool, this is similar to fitting fluorescence peaks in excitation-emission 
matrix spectroscopy (EEMs) and accounts for deviations that impact SCDOM in the spectral 
range considered. More work is required to determine the significance of these absorption-
based features to particular groups of molecules in the CDOM pool, including whether 
features fitted between 300-325 nm in the 300-700 nm spectral range are unique 
chromophores or a residual effect from the strong absorption of lignin absorption extending 
above 300 nm. 

Across all regions, spectral ranges that were commonly fitted were associated with 
spectral locations (~350 nm, 375 nm) of chromophores that are likely photorefactory 
[Helms et al., 2013] or chromophores that have been found to be produced from 
photobleaching of autochthonously produced CDOM [Swan et al., 2012]. The latter, a 
feature observed between 410-420 nm and noted in previous studies [Bricaud et al., 2010; 
Swan et al., 2012], was the most commonly fitted peak across all provinces in the 300-700 
nm spectral range. This feature was noticeably present across all spectral ranges, typically 
representing the second peak fitted in the 240-700 nm spectral range when more than one 
peak was fitted to the spectrum in this spectral range. 
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Two provinces that stood out regarding the average number of Gaussian peaks 
fitted per spectra were BPLR and BERS (Fig. 10). BPLR was dominated by measurements 
in the Chukchi Sea, a region with a greater magnitude of CDOM than the global ocean but 
less than most Arctic shelf regions due to predominantly authochthonously-produced 
CDOM [Dainard and Guéguen, 2013]. However, both BPLR and BERS have elevated 
levels of CDOM, likely a contributing factor to significantly more fitted peaks on average 
than other provinces. Both provinces were predominantly sampled during or shortly after 
the intense spring phytoplankton blooms associated with ice melt in these regions [Arrigo 
et al., 2014; Goes et al., 2013]. Phytoplankton absorption spectra in this region frequently 
display absorption in UV wavelengths due to the presence of mycosporine-like amino 
acids, a feature previously observed in the CDOM pool in Arctic habitats [Pavlov et al., 
2014]. This, in conjunction with an active microbial community [Matsuoka et al., 2015] 
are potential explanations for why these regions were dominated by spectra with an average 
of more than four Gaussian components. The dramatic reduction in number of Gaussian 
peaks fitted to aCDOM spectra in BERS and BPLR from 300-700 nm to 350-550 nm despite 
a relatively constant mean location of peaks (when fitted) suggests that further 
consideration can be given to the weighting factor in environments with a diverse CDOM 
pool if spectral range is a limiting factor. In these environments, reducing the weighting 
factor removes more residuals, allowing for more, smaller peaks to potentially be fit if the 
data presents an appropriate signal-to-noise (SNR) ratio. Locating and observing changes 
in these peaks will lend insight into links between the phytoplankton community and 
CDOM as well as the degradative state of CDOM. 

APLR spectra were typically fitted with few features and stood out as a unique 
province in most analyses (Fig. 6-9). This is potentially due to low aCDOM for some samples, 
but many samples contained aCDOM(350) greater than 0.1 m-1. This province is 
characterized by autochthonously produced CDOM, with a distinct S275:295 signal and a 
high correlation of aCDOM(325) with chlorophyll concentrations and upwelled waters 
transporting subsurface water with elevated levels of CDOM into the photic zone [D'Sa 
and Kim, 2017; Ortega-Retuerta et al., 2010; Ortega-Retuerta et al., 2009]. For many of 
these spectra, the lack of components is likely due to old, upwelled CDOM that behaves 
remarkably consistent across all spectral ranges, evidenced as an approximate one-to-one 
line in slope comparisons across different spectral ranges (not shown). This feature was 
also seen in CCAL, another province seasonally driven by upwelling and displaying 
different CDOM signatures between upwelled waters and waters dominated by 
phytoplankton blooms [Day and Faloona, 2009]. Considering that the number of Gaussian 
components decreased with depth for most provinces, zones of upwelling will likely 
display unique CDOM characteristics that include relatively uniform spectra with 
deviations resulting from recent biological contributions. 

 The utility of Gaussian peak height, φ, and width, σ, are less certain from our 
analysis. When we normalized for peak height by modeled aCDOM at the location of µ, 
oceanic waters presented a broader range of normalized φ including larger values, 
suggesting that these peaks are more prominent features relative to other chromophores 
contributing to aCDOM in these regions. This suggests these regions contain chromophores 
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that are consistently produced amid a background of relatively degraded CDOM or are 
photorefractory in nature, consistent with the spectral locations of the peaks relative to 
previous studies [Helms et al., 2013; Swan et al., 2012]. 

We did not find any significant trends in σ for any spectral ranges considered. While 
µ and φ are relatively intuitive features, the parameterization of σ carries more uncertainty 
related to the methodology. While peak location and height can shift due to changes in C 
(weighting factor for residual removal) and spectral range used for fitting, they are largely 
grounded in features of the aCDOM spectra as evidenced by similarity in location and height 
across spectral ranges used. Peak width can change dramatically based on C and, to a lesser 
extent, spectral range used, suggesting less interpretability. For our analysis, C was held 
constant at one for the entire dataset, weighing spectra evenly across all wavelengths. Thus, 
while our results are not impacted by changes in C, it is an important consideration for the 
community as the method becomes utilized more broadly.  

1.4.4 Applications to Remote Sensing 

Previous studies have found reliable relationships between aCDOM at specific 
wavelengths, including aCDOM(412) and aCDOM(443), and spectral slope values, including 
S275:295 [e.g. Mannino et al. 2014]. For our analysis, S275:295 could potentially be retrieved 
with reasonable accuracy in most biogeochemical provinces assuming an accurate retrieval 
of aCDOM(l) and a predetermined relationship between these two parameters. However, the 
INLAND and BPLR regions displayed particularly poor relationships, suggesting high 
variability in CDOM pools and significant differences in CDOM characteristics with 
similar aCDOM(l) values. Thus, some regions would be precluded from this methodology. 
Considering that most regions displayed unique trends and distributions of slope, a global 
relationship would poorly predict S275:295. 

NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) sensor is anticipated 
for launch in the near future and is expected to have hyperspectral (every 5 nm) capabilities 
down to 350 nm. Considering this, it is prudent to advance the knowledge of what can be 
determined regarding CDOM composition using aCDOM in this spectral range. To this end, 
we applied the methodology of Massicotte and Markager [2016] to identify spectral regions 
frequented by deviations that can impact satellite-derived estimates of chlorophyll-a and 
phytoplankton pigments, particularly methods utilizing band ratios as the most common 
region of deviations occurred from 410-440 nm. Hyperspectral sensors will allow for a 
baseline exponential absorption spectra, such as SE350:550, to be fitted to aCDOM spectra, 
allowing for these features to be ignored if the SNR of the sensor doesn’t allow for 
confident fitting of these features. An accurate SE350:550 directly estimated from 
hyperspectral satellite data will also aid in accounting for for deviations in aCDOM that are 
currently centered on or near multispectral bands. Our approach allows for these spectral 
regions and their frequency to be assessed to determine if regional accounting for these 
features can decrease error propagated through the spectrum by an ill-defined aCDOM(l0). 
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We also investigated the impact of inaccurate SCDOM values for estimating 
aCDOM(412) by comparing calculated aCDOM(412) to mean aCDOM(412) for each province. 
The resultant errors, from 4-22%, suggest that poorly parameterizing SCDOM lends 
significant uncertainty to satellite estimates of IOP’s strictly introduced through SCDOM. 
For multispectral algorithms, we suggest accounting for differences in SCDOM between 
provinces, as presented here, and continued consideration of the mean ratio of aNAP:aCDOM 
across distinct biogeochemical regions for methods that utilize SCDM. 

1.5 Conclusions 

In an attempt to close the knowledge gap and move towards a common 
methodology, we have presented SG values for three broad spectral ranges, 240-700 nm, 
300-700 nm and 350-550 nm as well as SE for 275-295 nm and 350-400 nm. We also 
explored the ability of the Gaussian decomposition method to expand our optical 
understanding of CDOM composition from a global database. Ideally, SCDOM can both 
adequately model the aCDOM spectra and relate to CDOM characteristics. We presented 
SCDOM as a diagnostic tool that can provide insights into CDOM composition with the 
potential to be applied to hyperspectral ocean color applications for optical estimates of 
CDOM composition. 

Of the slope ranges considered, we found S275:295 and S350:550 display clear, unique 
spatial trends that can be exploited for optically estimating changes in CDOM across 
diverse open ocean environments. S350:400 displayed potential for tracking changes to in situ 
production of CDOM, particularly with depth at a given location. S300:700 is a useful metric 
for particular regions if the underlying CDOM pool is known; however, this metric 
displayed good relationships with both S275:295 and S350:400, implying that the metric itself 
does not clearly delineate specific compositional traits that impact the optical signature of 
CDOM. 

Hyperspectral capabilities allow for direct estimates of SCDOM, providing insight 
into CDOM degradative state and in situ production pathways. However, SCDOM calculated 
using wavelengths anticipated to be available from PACE (> ~350 nm) differs significantly 
from SE275:295, requiring alternative methods for estimating terrestrial contribution, lignin 
content and molecular weight. The divergence in optical properties of SE350:400 and SE275:295 
observed here and documented in the literature suggest that SE350:400 can provide insight 
into in situ production pathways; however, further consideration should be given to this 
parameter in future studies along with whether a broader spectral range such as SG350:550 
provides more insight into these processes. 

Beyond tracking changes in CDOM and presenting a way to estimate CDOM 
composition, SCDOM is also important for accurately modeling aCDOM. We considered the 
mean aCDOM(443) for each province and assessed how much error is introduced to the 
aCDOM parameter using an assumed SCDOM of 0.0154 nm-1 and propagating aCDOM to 412 
nm. We found this assumed slope introduced errors in aCDOM(412) of 4-22% across all 
provinces relative to the mean aCDOM(412) observed (Fig. 12). Thus, poorly parameterizing 
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SCDOM with a constant global slope can introduce a similar, if not greater, level of 
uncertainty in retrieved aCDOM to mischaracterizing the percent contribution of aNAP to 
aCDM(412). 

Ultimately, CDOM will be best considered using a suite of metrics applied to ocean 
color imagery. Past work focusing on relationships between aCDOM at a given reference 
wavelength to estimate SE275:295 and lignin content can continue to be improved using in 
situ data and are anticipated to provide additional information not directly available from 
the anticipated PACE mission. The emphasis should be on continuing to relate quality, in 
situ measurements with SE350:400 and SG350:550, two metrics anticipated to be directly 
available via NASA’s PACE sensor in the near future, to maximize data potential from 
remotely-sensed imagery. It is our view that, prior to mission launch, the community will 
be well served with a better understanding of what information is directly retrievable with 
SCDOM and which spectral range is best suited for discrimination between distinct CDOM 
pools within the spectral capability of the mission. 
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2 Sensitivity of hyperspectral reflectance to colored 
dissolved organic matter spectral variability 

2.1 Introduction 

Ocean color remote sensing is a powerful tool for observing marine 
biogeochemistry, including monitoring the aquatic carbon cycle, managing fisheries and 
monitoring socio-economic hazards including harmful algal blooms (Friedland et al. 2012; 
Mannino et al. 2014; Stumpf et al. 2003; Vantrepotte et al. 2015). The utility of these 
instruments is largely derived from the ability to observe variability in remotely-sensed 
reflectance due to the primary absorbing constituents in seawater, or inherent optical 
properties (IOPs), of the water column – namely, phytoplankton, non-algal particles (NAP) 
and colored dissolved organic matter (CDOM). IOPs directly relate to many biological and 
biogeochemical ocean processes due to the magnitude and spectral shape of their spectra. 
CDOM absorption coefficients have been used to estimate dissolved organic carbon (DOC) 
export in the coastal zone (Cao et al. 2018; Mannino et al. 2008; Matsuoka et al. 2014; 
Vantrepotte et al. 2015), degradation of terrestrially-derived material (Fichot et al. 2014; 
Fichot et al. 2016) and in situ production of dissolved organic matter (Asmala et al. 2018; 
Danhiez et al. 2017; Nelson et al. 2010). Phytoplankton absorption coefficients and 
chlorophyll-a concentration (Chl) have been used to parameterize primary production 
(Behrenfeld and Falkowski 1997; Silsbe et al. 2016), constrain deep ocean carbon flux 
estimates (e.g. Mouw et al. 2016), optically estimate phytoplankton community 
composition or functional type via pigment identification (Bracher et al. 2017; Mouw et al. 
2017b; Mouw and Yoder 2010; Uitz et al. 2015) and aid in accurately modeling sustainable 
fisheries harvest (e.g. Friedland et al. 2012). 

 Addressing biogeochemical variability represented by IOP’s requires accurate 
retrieval of CDOM, phytoplankton and NAP absorption (ag(l), aph(l), and ad(l), 
respectively; l indicates wavelength of measurement). Historically, observation of these 
IOP’s at visible wavelengths has resulted in a lack of single solutions to inversion of 
remotely-sensed reflectance (Rrs(l); Defoin-Platel and Chami 2007; Sydor et al. 2004). 
From this, researchers have considered how the addition of ultraviolet (UV) wavelengths 
aid in solving inversion of Rrs(l) problems due to increased sensitivity of these 
wavelengths to ag(l) (Wei et al. 2016). The assumption for this is that aph(l) decreases in 
the UV, while ag(l) and ad(l) exponentially increases with decreasing wavelength. 
However, phytoplankton absorption in the UV can be a significant contributor, particularly 
in the presence of mycosporine-like amino acids (MAAs) that limit UV damage to 
phytoplankton cellular structures (e.g. Carreto et al. 1990). Additionally, modeling 
sensitivity to CDOM spectral shape, described by the spectral slope parameter (Sg), is 
complicated by sensitivity to the initial wavelength used to propagate theoretical ag(l) 
spectra (e.g. Wei et al. 2016). Beyond consideration of wavebands that help in constraining 
inverted Rrs(l) towards a more limited set of solutions, the signal-to-noise (SNR) of a 
sensor also determines the ability to view spectral features. Satellite-derived Rrs(l) is 
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notoriously noisy when compared to in situ measurements; thus, while optical techniques 
established for in situ data may prove quite promising, application to a sensor requires an 
understanding of sensor limitations alongside constraining the observed signal to a limited 
set of solutions. 

 A significant parameter in limiting uncertainty in absorption retrieved from 
satellite-derived Rrs(l) is the shape of the exponential absorption signal due to ag(l) and 
ad(l), adg(l), parameterized as spectral slope (Sdg) following the exponential model: 

 345(6) = 345(62)$
%89:(;%;<)	 (1) 

where l0 is a reference wavelength (e.g. 440 nm). Current algorithms utilize observed 
Rrs(l) at specific wavelengths to characterize adg(l0), relying on either an assumed Sdg or 
an Sdg estimated from Rrs(l) ratios to model adg(l) (Lee et al. 2002; Mannino et al. 2014; 
Maritorena et al. 2002; Matsuoka et al. 2013; Werdell et al. 2013). Depending on the 
magnitude of adg(l) in the system and relative accuracy of Sdg, considerable uncertainty 
can be added to retrievals of aph(l) and products derived from aph(l) (e.g. Organelli et al. 
2016). Due to the problem of more unknowns than knowns in inversion procedures, Sdg is 
typically assumed at a value from 0.015-0.018 nm-1 (Lee et al. 2002; Werdell et al. 2013; 
Maritorena et al. 2002). The spectral shape of NAP (Sd) is considerably less variable in the 
global ocean than Sg (Babin et al. 2003; Siegel et al. 2002), while Sg has been linked to 
specific production and degradation processes of CDOM, particularly in riverine, inland 
and coastal waters (Danhiez et al. 2017; Helms et al. 2008). Thus, Sg contains 
biogeochemical information relevant to understanding turnover production and 
degradation dynamics of the marine DOM pool, a pool of carbon that accounts for ~98% 
of oceanic organic carbon (citation). From this, researchers have attempted to estimate, 
rather than assume Sg, although to date, no method provides an estimation free of explicit 
or semi-explicit assumptions (e.g. Dong et al. 2013; Matsuoka et al. 2013). 

 NASA is planning the Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) 
sensor with hyperspectral capability (Rrs(l) resolution ≤ 5 nm). This sensor has been 
posited to provide an enormous leap forward in our ability to accurately constrain 
biogeochemical parameters currently retrieved as well as providing the ability to observe 
new parameters, including Sg (e.g. Wei et al. 2016; Vandermeulen et al. 2017). Our 
understanding of the sensitivity of Rrs(l) to changes in Sg, however, has not been 
considered. Considering the future capabilities of PACE and useful biogeochemical 
information provided by Sg, we detail the impact of changes in Sg on Rrs(l) across a large 
lake (Lake Superior). We relate changes in Rrs(l) to the proposed SNR of PACE to 
determine spectral ranges that could be utilized to estimate Sg as well as the sensitivity of 
an estimated Sg across diverse environmental conditions. Finally, we relate the proposed 
accuracy of determining Sg to observed variability in Lake Superior and relate this to our 
ability to detect biogeochemical variability affiliated with Sg. 
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2.2 Methods 

2.2.1 Study Site 

Lake Superior is one of the largest lakes in the world and dominates the local climate. 
Despite its size, carbon cycling in Lake Superior is strongly influenced by terrestrial 
contributions (Minor et al. 2012; Urban et al. 2005). These contributions cause CDOM to 
dominate the absorption budget (Mouw et al. 2013) with degradation of terrestrial CDOM 
largely driven by photodegradation (Ma and Green 2004; MacDonald and Minor 2013) 
and long-term DOM transformations driven by microbial use of DOM, particularly 
photodegraded material (Biddanda and Cotner 2003; Hiriart-Baer et al. 2011; McManus et 
al. 2003). Lake Superior is an oligotrophic system (Barbiero and Tuchman 2004), which 
would suggest limited contribution of marine-produced CDOM to the total DOM budget; 
however, annual autochthonous DOC production is estimated to be quite similar to annual 
terrestrial DOC loading (Cotner et al. 2004; Sterner 2010; Urban et al. 2005). Lake Superior 
is also experiencing the most rapid warming of all the Laurentian Great Lakes (Austin and 
Colman 2007). This has been largely attributed to decreases in ice extent, although both 
ice cover and surface heat flux play a large role in temperature fluctuations for this system 
(Austin and Colman 2007). Due to large perturbations from climate change, an increase in 
CDOM quantity and quality from terrestrial systems is anticipated, as well as changes in 
photochemistry due to a decrease in winter ice cover (e.g. Creed et al. 2017; Austin and 
Colman 2007). These biogeochemical changes should be readily observable as changes in 
ag(l) magnitude and spectral shape; thus, Lake Superior provides an ideal testing 
environment for PACE capabilities related to use of ag(l) to observe sensitivity of carbon 
cycling to climate warming (Danhiez et al. 2017; Romera-Castillo et al. 2011; Williamson 
et al. 2015). 

2.2.2 Data 

A detailed description of the full dataset collected in Lake Superior, of which this data 
is a subset, can be found in Mouw et al. (2017a). Here we provide a brief overview of the 
observed parameters and their collection methods used in this analysis.  Optical data were 
collected during ice-free months (May-October) of 2014-2016 (Fig. 1). Radiometric 
measurements were made with Hyper-OCR spectral radiometers (Satlantic Inc.) that 
measure between 350-800 nm at an ~3 nm resolution (137 total wavelengths). All Rrs(l) 
were derived from surface casts where the radiometer was equipped with a flotation collar 
by which the surface light field is characterized by collecting surface irradiance, Es(l) (µW 
cm-2) and upwelling radiance, Lu(l) (µW cm-2 sr-1) below the surface is used to calculate 
Rrs(l) (sr-1) as described in Mouw et al. (2017a). CDOM, non-algal particulate and 
phytoplankton absorption were measured spectrophotometrically (PerkinElmer; Lambda 
35 UV/Vis dual beam) for wavelengths between 300 and 800 nm. CDOM absorption was 
measured in a 10 cm cuvette following NASA ocean optics protocols (Mueller et al. 2003). 
Particulate absorption (ap) and ad were measured following the transmission-reflectance 
(T-R) method (Lohrenz 2000; Lohrenz et al. 2003; Tassan and Ferrari 2002) using an  
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Figure 1. Stations map with marker color and size indicating year and marker color and shade indicating 
month of a given year. 

integrating sphere. Blanks were prepared and measured daily to normalize T-R data. 
Phytoplankton absorption was derived as the difference between before (ap) and after (ad) 
exposure to sodium hypochlorite. Particulate backscattering (bbp(l)) was characterized 
using an ECO-BB9 sensor (Wetlabs) on board a profiling bio-optical package by removing 
scattering due to pure water (bbw) from total measured backscattering. All available 
measurements (binned to 1 m values; Mouw et al. 2017a) in the top 10 m were averaged 
to produce a bbp(l) spectra representative of the upper euphotic zone; bbp(l) typically 
displayed consistent values in this depth range.  

2.2.3 HydroLight 

We used the radiative transfer software HydroLight (Mobley 1988) to simulate 
remotely-sensed reflectance for each station sampled in Lake Superior. Simulations were 
initialized with discrete absorption spectra collected within 10 m of the surface, discrete 
Chl collected coincident with absorption spectra and mean bp(535) and bbp(535) collected 
in the top 10 m of the water column (input for HydroLight as the ratio of bbp(l)/bp(l) and 
observed bbp(l)). Particulate scattering and backscattering displayed consistent values in 
this depth range.  

Radiative transfer simulations were run assuming that the mixed layer was 
homogeneous and within an infinitely deep water column and model outputs were obtained 
at a depth of 0 m (lake-atmosphere interface). Sky conditions were based on observed cloud 
cover and visibility. Solar angle was calculated using a NOAA solar angle calculator 
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(https://www.esrl.noaa.gov/gmd/grad/solcalc/) from the latitude, longitude and date of 
sampling. All samples were taken between 900 and 1500 local time and solar angle at 1200 
was assumed for model input. Wind speed was set to 3 m·s-1, a value generally 
representative of conditions during sampling. Raman scattering and chlorophyll-a 
fluorescence were included in all runs. We initially included CDOM fluorescence but this 
resulted in a significantly higher simulated Rrs(l) for all stations relative to observed Rrs(l), 
suggesting that the quantum yield used to parameterize CDOM fluorescence in HydroLight 
dramatically overestimates actual CDOM fluorescence in Lake Superior. Model runs were 
performed from 350-700 nm at 5 nm increments to assess sensitivity and retrieval 
improvement from PACE. For in situ data that were not observed at these wavelengths, 
data were linearly interpolated (e.g. bbp(l) measured at 9 wavelengths). Data that were 
sampled at a higher frequency (1 nm) were downsampled to 5 nm resolution from 350-700 
nm for a total of 71 data points (e.g. ag(l)). 

We assessed the impact of varying Sg on Rrs(l) by simulating identical conditions 
for each station but altered input ag(l) by taking the ensemble mean of ag(l) spectra 
calculated using l0 of 350, 400, 450 and 500 nm and the respective Sg. We varied Sg ±0.005 
nm-1 from observed Sg calculated from 350-700 nm (S350:700), varying in 0.001 nm-1 
increments. This range of Sg values was chosen based on the approximate range of 
observed values in the dataset, with this range consistent across different ultraviolet-visible 
(UV-vis) wavelength ranges considered and used in the literature (e.g. 350-400 nm, 300-
600 nm). In effect, this created 10 additional simulations per sampled station to assess the 
sensitivity of Rrs(l) to changes in Sg. We utilized S350:700 for all HydroLight simulations, 
but present results for in situ Sg in the spectral range of 300-600 nm, as this spectral range 
captures additional spectral variability and has been linked to CDOM bulk molecular 
weight (Stedmon and Nelson 2014; Wünsch et al. 2018).  

2.2.4 Data Analysis 

 We considered the accuracy of HydroLight simulations through comparison of 
simulated and measured Rrs(l). Bias and mean absolute percentage error (MAPE) were 
calculated as: 

 >?3@ =
1

B
CDE#

FGH#IJHF4 − E#
LMGFNOF4P

0

#1Q

 (2) 

 

 RSTU =
∑ DVE#

FGH#IJHF4 − E#
LMGFNOF4VP0

#1Q

B
∙ 100 (3) 



43 

 There is an evident bias in simulation results when altering ag(l) based on the initial 
l0 chosen to represent a spectrally-altered ag spectra (e.g. Wei et al. 2016). We attempted 
to address this through an ensemble mean of alterations to ag(l) modeled with Eq. 1. 
However, ideally we could consider how changes in observed Rrs(l) are linked to Sg 
variability. We identified two sets of stations with very similar aphy(l), ad(l) and bbp(l) to 
compare how ag(l) and Sg impact Rrs(l). For both sets of data, ag(l) played the primary 
role in variability of Rrs(l) and this impact needs to be accounted for to consider the impact 
of Sg. We did this through the following expression: 

 YNG	0LNI(6) = YNG(6) ∙ 35(6) (4) 

where Rrs_norm(l) is considered as a normalized Rrs(l). We then calculated the difference 
between Rrs_norm(l) (∆Rrs_norm(l)) for each site. At this point, units of ∆Rrs_norm(l) are sr-

1·m-1, precluding a direct comparison to PACE SNR (sr-1). To account for this we 
multiplied ∆Rrs_norm(l) by 1 m-1, resulting in ∆Rrs_norm(l) with units of sr-1 and theoretically 
representative of the impact of a change in Sg relative to a given magnitude of ag(l). In 
effect, this produces a comparison of observed change in Rrs(l) due to Sg variability relative 
to PACE SNR. 

2.3 Results 

2.3.1 Field Data 

 Absorption parameters displayed several remarkably uniform patterns across 
sampling regions and years: ag(l) and Sg displayed a clear inverse relationship across all 
wavelengths sampled (300-700 nm), suggesting a strong role for photodegradation within 
the system; aph(l) and ad(l) displayed a positive covariation with ag(l) suggesting that 
elevated CDOM, despite decreasing light availability, is present alongside positive growth 
conditions (increased nutrients, photoprotection) for phytoplankton or light-adapted 
phytoplankton communities (higher cell-1 absorption rate). Some relatively low Sg values 
were observed in offshore waters during August and October. These Sg values were very 
close to Sg typically observed at depth, suggesting mixing of deep waters into the surface. 
Lake Superior is seasonally stratified, but stratification in the middle of the lake can be 
quite weak, particularly in summers following high ice, extended winter periods (e.g. 
summer of 2014; Austin and Colman 2007). NAP absorption co-varied with aph(l), 
suggesting that the bulk of ad(l) in Lake Superior is sourced from phytoplankton-derived 
organics (Fig. 2); alternatively, the majority of ad(l) could also derive from mineral 
particles that have displayed enhanced backscattering in this system (Peng et al. 2009), as 
bbp(l) displayed a consistent decrease in magnitude with decreasing ad(l). 
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Figure 2. Observed (a) ag(l), (b) aph(l), (c) ad(l) and (d) bbp(l) for all stations and years. Line color indicates 
S300:600 observed at a given station. 
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Rrs(l) did not display a consistent relationship with ag(l) or S300:600, although this is 
somewhat expected (Fig. 3). While waters with higher magnitudes of ag(l) are expected to 
absorb more light, resulting in a lower overall Rrs(l) signal, they also typically had higher 
bbp(l) values resulting in more light reflected from the euphotic zone. Some stations were 
visibly turbid, but the majority of waters sampled were low turbidity with relatively deep 
Secchi depths (mean=13 m, n=20). The result was a dome-shaped Rrs(l) for all stations, 
with the rate of decrease at shorter wavelengths (380-490 nm) dictated by the magnitude 
of ag(l). This dome-shape is consistent for oligotrophic, northern latitude lakes dominated 
by terrestrial ag(l), as pure water absorption dominates absorption at red and infrared 
wavelengths and ag(l) dominates absorption at UV wavelengths, while aph(l) is low. For 
waters where observed ag(l) was high (e.g. ag(350) > 1 m-1), Rrs(l) at wavelengths < 400 
nm was often only an order of magnitude larger than PACE SNR for these wavelengths, 
displaying the difficulty in relying on UV wavelengths to estimate ag(l) and Sg in waters 
dominated by this IOP. 

 

Figure 3. Observed Rrs(l) for all stations and years with line color indicating observed S300:600. 

2.3.2 HydroLight Simulations 

2.3.2.1 Simulated Rrs(l) 

The main focus of this work is to consider how varying Sg impacts Rrs(l) and 
estimate the ability to detect changes in Rrs(l) explicitly due to changes in Sg. Thus, we did 
not pursue optical closure but did assess HydroLight performance relative to observed 
Rrs(l). Overall, simulated Rrs(l) displayed a similar distribution regarding magnitude and 
relationship with CDOM variability (ag and Sg; Fig. 4). The absolute minimum and 
maximum simulated Rrs(l) fell very close to within observed values, suggesting that 
simulation results were reasonable (Fig. 4b). MAPE was predominantly <40% for 
wavelengths up to 650 nm (Fig. 4c). Calculated bias shows that simulated Rrs(l) was  
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Figure 4. (a) HydroLight simulated Rrs(l) for all stations and years with line color indicating observed 
S300:600. (b) Comparison of mean and range of observed and simulated Rrs(l). (c) Mean absolute percent error 
and bias for all simulated Rrs(l). 
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typically larger than observed values for a given spectra. Error tended to be an order of 
magnitude smaller than observed Rrs(l). 

2.3.2.2 Sg Sensitivity 

In order to more accurately assess the influence of variable Sg on changes in Rrs(l), 
we modeled changes in ag(l) as an ensemble mean of ag(l) modeled using l0 values of 
350, 400, 450 and 500 nm (Fig. 5a). This results in changes in ag(l) more representative of 
observed changes in ag(l) affiliated with variability in molecular size and Sg on a single 
sample (Wunsch et al. 2018) while also avoiding the issue of a “pinch point” where all 
simulation results converge at the point of common l0 (Wei et al. 2016). The impact of Sg 
variability on Rrs(l) for the example spectra in Fig. 5a is presented (Fig. 5b) and displays 
the largest magnitude of change from ~450-600 nm, coincident with the largest magnitude 
of Rrs(l). 

 

Figure 5. Examples of altered (a) ag(l) relative to the observed ag(l) (red line) and (b) resulting Rrs(l) for 
the respective change in Sg and altered ag(l). 
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We considered the influence of changes in Sg affiliated with the relative variability in Sg 
observed in the system (Fig. 6). Observed Sg values were altered by ±0.005 nm-1 in 0.001 
nm-1 increments, with the minimum and maximum change in Rrs(l) (∆Rrs) illustrated 
alongside median ∆Rrs relative to PACE SNR. We considered variability in Sg that 
corresponded to ∆Rrs of an order of magnitude larger than PACE SNR to be a readily 
viewable spectral change and consider “consistent viewability” as a spectral range of at 
least 50 nm, consistent with spectral ranges used in UV and visible wavelengths in the 
literature. Minimum ∆Rrs did not consistently pass this threshold until absolute changes in 
Sg were greater than 0.003 nm-1, while median ∆Rrs was consistently an order of magnitude 
greater than PACE SNR for all changes in Sg considered. The spectral range of ~400-550 
nm most consistently saw observable changes in Sg for this system. 

2.3.3 Observed Sg Variability 

HydroLight provides a unique ability to isolate changes in Rrs(l) due to specific IOP’s or 
spectral variability, as evidenced here. Changes in Sg of 0.001 nm-1 are observable for many 
optical conditions sampled in Lake Superior; we sought to consider how relatable 
simulated results were to in situ variability and observed changes in Rrs(l) across stations 
where ag(l) represented the primary optical variability between locations. Sg presents 
approximately 0.01 nm-1 variability regardless of spectral range used (350-700 nm, as used 
for HydroLight simulations, and 300-600 nm, as used to characterize in situ spectral 
variability). The western arm of Lake Superior near a large Lake Superior tributary, the St. 
Louis River, displayed relatively limited ag(l) spectral variability across all sampled sites 
while also presenting cases of clear to very turbid water (Fig. 7). We considered stations 
where aph(l) and ad(l) magnitude were similar (variability was at least one order of 
magnitude smaller than ag(l) variability) and bbp(535) was the same or very similar (Fig. 
8). In effect, this isolates the first order variability in Rrs(l) to changes in ag(l) and Sg. We 
then compared ∆Rrs_norm between stations to isolate the impact of observed Sg variability 
on Rrs(l) (Fig. 8a-v,b-v) and compare this change relative to PACE SNR (Fig. 8a-vi,b-vi). 

2.4 Discussion 

The utility of optics-based metrics of CDOM composition is the low cost and speed 
of measurement and the potential for application across autonomous and satellite 
platforms. Historically, linking optical variability in ag spectra to DOM composition has 
been limited by available tools. Recent advances in characterization, including various size 
fractionation techniques and mass spectrometry analysis alongside fluorescence and 
absorption characterization of CDOM has provided significant advances in our 
understanding of specific optics-based metrics relevant to understanding DOM 
composition, source, degradation state and molecular weight (Helms et al. 2008; Kellerman 
et al. 2018; Kellerman et al. 2015; Wünsch et al. 2018). Alongside these advances has been 
a more thorough understanding of the role of specific ecosystems and trophic levels (e.g. 
phytoplankton, bacteria) to optical signatures, including under various nutrient conditions  
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Figure 6. Median and range of DRrs for all simulated Rrs(l) for each change in Sg.  
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Figure 7. Distribution of S300:600 for all sampled stations with marker size indicating year and marker color 
indicating S300:600 values. 

and degradation state (Asmala et al. 2014; Danhiez et al. 2017; Asmala et al. 2018; 
Kinsey et al. 2018). These advances provide tremendous insight on short timescales but 
lack the synoptic information available from satellite sensors. However, beyond the 
initial work of Wei et al. (2016), the ability of current and future hyperspectral sensors to 
detect changes in Rrs(l) explicitly due to Sg variability has not been assessed. 

Here, we show that for an environment dominated by CDOM as the primary IOP, 
changes in Sg are a detectable feature in Rrs(l). We considered the sensitivity of Rrs(l) to 
both ag(l) magnitude and Sg variability. From this, it appears likely that biogeochemically 
significant changes in Sg (~0.001 nm-1) are an observable feature for many water 
conditions, a finding supported by analysis of in situ data (Fig. 9). From this, a few 
important points emerge: 1) Available wavelengths for detecting changes due to Sg 
typically occur at visible wavelengths (400-550 nm), a spectral range that has not been well 
considered for biogeochemical significance. Spectral variability from 350-400 nm has been 
previously linked to changes in molecular weight and degradation pathways (Helms et al. 
2008) but has also been shown to correlate poorly with significant changes in DOM 
composition at the molecular level (Kellerman et al. 2018). Rates of change at various 
CDOM wavelengths directly impact observed Sg and are the origin of inconsistency 
between Sg calculated over different wavelength ranges (e.g. Twardowski et al. 2004). 
These changes are reflective of production and degradation of different chromophores, and 
appear to be linked to specific environmental conditions, phytoplankton bloom stages and 
degradation history (Asmala et al. 2018; Asmala et al. 2014; Danhiez et al. 2017; 
Yamashita et al. 2013). Much of this variability has been attributed to the contribution of 
humic or humic-like CDOM by bacteria (Kinsey et al. 2018; Romera-Castillo et al. 2011).  
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Figure 8. Example (a) ag(l), (b) aph(l), (c) ad(l), (d) Rrs(l), (e) DRrs and (f) DRrs/SNR between optically 
similar stations. 

The molecular composition of phytoplankton exudates has also been observed to vary 
based on phytoplankton composition, physiology and nutrient stress (Asmala et al. 2018; 
Myklestad 1995), with observable changes in ag and Sg affiliated with these changes 
(Danhiez et al. 2017; Organelli et al. 2014; Romera-Castillo et al. 2011). These optical 
changes are directly affiliated with changes in oxidation and reduction potential of DOM 
that are a function of background seawater chemistry, degradation state and interaction of 
newly produced DOM with the background DOM pool (i.e. priming effect; Aeschbacher 
et al. 2011; Boyd and Osburn 2004; Helms et al. 2014; Helms et al. 2013; Kujawinski et 
al. 2016; Mentges et al. 2017). 
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 It seems difficult to constrain an immensely complicated matrix of organic 
compounds subject to varying forcing – terrestrial and marine signal; microbial and 
phytoplankton signal; environmental controls – with a single, relatively simple parameter 
such as Sg. However, the consistent relationship between optical metrics including Sg and 
DOM compositional variability across environments suggests that specific groups of 
molecules that behave in an optically similar fashion carry information about DOM 
composition, and these optical signatures can in turn be characterized (Catalá et al. 2016; 
Danhiez et al. 2017; Kellerman et al. 2018; Zhao et al. 2017). Indeed, spatial variability in 
DOM composition from the coastal to open and surface to deep ocean is consistent with 
optical considerations that view an increasingly humic, microbial-derived DOM pool 
(Catalá et al. 2015; Kaiser and Benner 2009; Mentges et al. 2017; Yamashita and Tanoue 
2008). This opens a door for tracking the aquatic carbon cycle on global scales via ocean 
color data, provided molecular characterization of DOM alongside optical characterization 
continues in situ. The primary limitations, beyond launch of PACE and similar 
hyperspectral sensors (e.g. similar spatial and temporal resolution, SNR), are: 1) algorithms 
capable of estimating Sg in an unbiased manner and 2) relationships of UV-vis Sg metrics 
with DOM composition. To date, the majority of work has related S275:295 to trends in DOM 
composition with promising results (Helms et al. 2008; Kellerman et al. 2018). Algorithms 
exist to relate ag(l) to S275:295 but are dependent on strong gradients in ag(l) that typically 
occur across transects of predominantly terrestrial to marine CDOM or where 
photodegradation is the primary pathway of change (Fichot et al. 2013; Mannino et al. 
2014). Alternately, algorithms assume a consistent relationship between variability 
between ag(l) at visible wavelengths and Sg, including S275:295 (Cao and Miller 2015; 
Matsuoka et al. 2013). While this approach works for some systems, analysis of rates of 
change in ag(l) show that production and degradation vary at different wavelengths and 
under different environmental conditions, with visible wavelengths particularly insensitive 
to spectral changes in the UV at times (Asmala et al. 2014; Danhiez et al. 2017; Asmala et 
al. 2018). This suggests further consideration of directly observable Sg (i.e. 350-600 nm 
spectral range) and the relationship with changes in DOM composition. Also, consideration 
of alternate metrics capable of determining environmental conditions to assess the 
applicability of a specific algorithm could be useful; for example, one algorithm can 
accurately retrieve S275:295 under the exponential growth phase of a phytoplankton bloom, 
but another algorithm is required for the decay phase. 

 Lake Superior is a unique environment to study CDOM dynamics as its size 
provides for significant production and processing of DOM but the large, predominantly 
forested watershed draining into the lake delivers a readily observed terrestrial signal to the 
lake. Lake Superior displays significant optical variability that is regionally and seasonally 
consistent (Trochta et al. 2015) with this optical variability largely driven by changes in 
ag(l) (Mouw et al. 2013). Sampling of this system is largely limited to ice-free months 
during fair weather, leaving a large data gap that is well-addressed from satellite platforms 
(Mouw et al. 2013). Past success in retrieving optical variability and ag(l) from 
multispectral platforms suggests that satellite-estimated ag(l)  can estimate changes to 
terrestrial systems draining into the lake as well as autochthonous processes manifested by 
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ag(l) optical variability. Considering rapid warming of Lake Superior, understanding 
spectral variability of CDOM provides a unique tool to track climate-driven changes to the 
Lake Superior watershed and Lake Superior proper and how these changes drive variability 
in aquatic carbon cycling in this system (Austin and Colman 2007; Creed et al. 2018; 
Mouw et al. 2013; Williamson et al. 2015). 

Carbon cycling into and within Lake Superior and CDOM optical properties for 
these systems have been considered and display interesting trends. DOM delivered to Lake 
Superior across a range of tributaries display similar optical properties including spectral 
slope and magnitude of ag(l), regardless of tributary size and reach, as well as consistent 
biodegradation rates (Coble et al. 2016b; unpublished data). Many large Lake Superior 
tributaries are quite turbid (e.g. Sturgeon River), while smaller tributaries often flow 
through primarily forested watersheds, limiting within-stream photodegradation (Coble et 
al. 2016a). Additionally, nitrate concentrations in these watersheds are very low and 
microbial degradation has been shown to be enhanced by introducing nitrogen sources 
(Coble et al. 2015). This suggests that microbial degradation of DOM within streams is 
nutrient limited. Considering this and the extremely consistent trend between spectral slope 
and magnitude of ag(l) across sampling sites and years, it appears the vast majority of 
CDOM in Lake Superior is delivered from terrestrial systems and progressively 
photodegraded (Fig. 2; Ma and Green 2004). DOM is a major component of carbon cycling 
in Lake Superior with photodegradation playing a large role in its bioavailability (Biddanda 
and Cotner 2003). Samples considered here focused on the sunlit surface waters where 
there is likely a tight feedback between photodegradation and microbial utilization of DOM 
in this large, oligotrophic lake (Biddanda et al. 2001). Coastal and open ocean DOM 
cycling can be quite complex; while we do not seek to reduce the complexity of Lake 
Superior DOM cycling, it appears that there are relatively clear trends in delivered material 
and its processing within the lake. If true, Lake Superior presents an ideal environment to 
observe climate-driven changes in CDOM cycling from a future hyperspectral sensor. 

2.5 Conclusions 

Characterizing CDOM spectral variability allows for rapid and effective estimation 
of aquatic DOM cycling. Hyperspectral satellite ocean color data provides a means of 
estimating this variability over broad spatial and temporal scales, provided Sg variability 
can be observed and estimated. We show that for Lake Superior and other systems where 
ag(l) dominates the absorption budget, Rrs(l) variability solely due to changes in Sg is an 
observable feature, particularly at wavelengths from 400-550 nm. Sensitivity to Sg can be 
estimated to 0.001 nm-1 for many observed waters, suggesting that biogeochemical 
variability characterized by Sg can be estimated from PACE. 

 Much of the discussion considered here is very forward thinking, particularly in the 
context of current multispectral sensors. With hyperspectral sensors in orbit (e.g. 
Hyperspectral Imager for the Coastal Ocean (HICO), Scanning Imaging Absorption 
Spectrometer for Atmospheric Chartography (SCIAMACHY)) and slated for orbit (e.g. 
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PACE) in the next ~5 years, we suggest that what heritage sensors did for detecting 
chlorophyll, hyperspectral sensors are capable of doing for the aquatic carbon cycle and 
specifically DOM cycling. We show here that the SNR of PACE provides the ability to 
detect changes in Rrs(l) explicitly related to variability in Sg. In Lake Superior, changes in 
Sg were typically associated with changes in ag(l), where ag(l) variability accounts for the 
majority of change in Rrs(l) magnitude and, to a lesser extent, Rrs(l) spectral shape. 
However, variability in the global ocean of ag(l) and Sg are often de-coupled. For these 
environments, accurate detection of Sg is crucial for monitoring changes in CDOM 
composition. In systems where ag(l) and Sg variability are tightly coupled, such as Lake 
Superior, these variables can be seen as complimentary in nature with added value in 
accurate retrievals of Sg. 

2.6 References 

Aeschbacher, M., Vergari, D., Schwarzenbach, R.P., & Sander, M. (2011). 
Electrochemical analysis of proton and electron transfer equilibria of the reducible 
moieties in humic acids. Environ Sci Technol, 45, 8385-8394 

Asmala, E., Autio, R., Kaartokallio, H., Stedmon, C.A., & Thomas, D.N. (2014). 
Processing of humic-rich riverine dissolved organic matter by estuarine bacteria: 
effects of predegradation and inorganic nutrients. Aquatic Sciences, 76, 451-463 

Asmala, E., Haraguchi, L., Jakobsen, H.H., Massicotte, P., & Carstensen, J. (2018). 
Nutrient availability as major driver of phytoplankton-derived dissolved organic 
matter transformation in coastal environment. Biogeochemistry, 137, 93-104 

Austin, J.A., & Colman, S.M. (2007). Lake Superior summer water temperatures are 
increasing more rapidly than regional air temperatures: A positive ice-albedo 
feedback. Geophysical Research Letters, 34 

Babin, M., Stramski, D., Ferrari, G.M., Claustre, H., Bricaud, A., Obolensky, G., & 
Hoepffner, N. (2003). Variations in the light absorption coefficients of 
phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters 
around Europe. Journal of Geophysical Research, 108 

Barbiero, R.P., & Tuchman, M.L. (2004). The deep chlorophyll maximum in Lake 
Superior. Journal of Great Lakes Research, 30 (Supplement 1), 256-268 

Behrenfeld, M., & Falkowski, P.G. (1997). Photosynthetic rates derived from satellite-
based chlorophyll concentration. Limnology & Oceanography, 42, 1-20 

Biddanda, B.A., & Cotner, J.B. (2003). Enhancement of dissolved organic matter 
bioavailability by sunlight and its role in the carbon cycle of Lakes Superior and 
Michigan. Journal of Great Lakes Research, 29, 228-241 



55 

Biddanda, B.A., Ogdahl, M., & Cotner, J.B. (2001). Dominance of bacterial metabolism in 
oligotrophic relative to eutrophic waters. Limnology and Oceanography, 46, 730-
739 

Boyd, T.J., & Osburn, C.L. (2004). Changes in CDOM fluorescence from allochthonous 
and autochthonous sources during tidal mixing and bacterial degradation in two 
coastal estuaries. Marine Chemistry, 89, 189-210 

Bracher, A., Bouman, H.A., Brewin, R.J.W., Bricaud, A., Brotas, V., Ciotti, A.M., 
Clementson, L., Devred, E., Di Cicco, A., Dutkiewicz, S., Hardman-Mountford, 
N.J., Hickman, A.E., Hieronymi, M., Hirata, T., Losa, S.N., Mouw, C.B., Organelli, 
E., Raitsos, D.E., Uitz, J., Vogt, M., & Wolanin, A. (2017). Obtaining 
Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future 
Development. Frontiers in Marine Science, 4 

Cao, F., & Miller, W.L. (2015). A new algorithm to retrieve chromophoric dissolved 
organic matter (CDOM) absorption spectra in the UV from ocean color. Journal of 
Geophysical Research: Oceans, 120, 496-516 

Cao, F., Tzortziou, M., Hu, C., Mannino, A., Fichot, C.G., Del Vecchio, R., Najjar, R.G., 
& Novak, M. (2018). Remote sensing retrievals of colored dissolved organic matter 
and dissolved organic carbon dynamics in North American estuaries and their 
margins. Remote Sensing of Environment, 205, 151-165 

Carreto, J.I., Carignan, M.O., Daleo, G., & Marco, S.G.D. (1990). Occurrence of 
mycosporine-like amino acids in the red-tide dinoflagellate Alexandrium 
excavatum: UV-photoprotective compounds? Journal of Plankton Research, 12, 
909-921 

Catalá, T.S., Reche, I., Fuentes-Lema, A., Romera-Castillo, C., Nieto-Cid, M., Ortega-
Retuerta, E., Calvo, E., Alvarez, M., Marrasé, C., & Stedmon, C.A. (2015). 
Turnover time of fluorescent dissolved organic matter in the dark global ocean. 
Nature communications, 6, 5986 

Catalá, T.S., Reche, I., Ramón, C.L., López-Sanz, À., Álvarez, M., Calvo, E., & Álvarez-
Salgado, X.A. (2016). Chromophoric signatures of microbial by-products in the 
dark ocean. Geophysical Research Letters, 43, 7639-7648 

Coble, A.A., Marcarelli, A.M., & Kane, E.S. (2015). Ammonium and glucose amendments 
stimulate dissolved organic matter mineralization in a Lake Superior tributary. 
Journal of Great Lakes Research, 41, 801-807 

Coble, A.A., Marcarelli, A.M., Kane, E.S., & Huckins, C.J. (2016a). Uptake of ammonium 
and soluble reactive phosphorus in forested streams: influence of dissolved organic 
matter composition. Biogeochemistry, 131, 355-372 



56 

Coble, A.A., Marcarelli, A.M., Kane, E.S., Toczydlowski, D., & Stottlemyer, R. (2016b). 
Temporal patterns of dissolved organic matter biodegradability are similar across 
three rivers of varying size. Journal of Geophysical Research: Biogeosciences, 121, 
1617-1631 

Cotner, J.B., Biddanda, B.A., Makino, W., & Stets, E. (2004). Organic carbon 
biogeochemistry of Lake Superior. Aquatic Ecosystem Health & Management, 7, 
451-464 

Creed, I.F., Bergstrom, A.K., Trick, C.G., Grimm, N.B., Hessen, D.O., Karlsson, J., Kidd, 
K.A., Kritzberg, E., McKnight, D.M., Freeman, E.C., Senar, O.E., Andersson, A., 
Ask, J., Berggren, M., Cherif, M., Giesler, R., Hotchkiss, E.R., Kortelainen, P., 
Palta, M.M., Vrede, T., & Weyhenmeyer, G.A. (2018). Global change-driven 
effects on dissolved organic matter composition: Implications for food webs of 
northern lakes. Glob Chang Biol 

Danhiez, F., Vantrepotte, V., Cauvin, A., Lebourg, E., & Loisel, H. (2017). Optical 
properties of chromophoric dissolved organic matter during a phytoplankton 
bloom. Implication for DOC estimates from CDOM absorption. Limnology and 
Oceanography, 62, 1409-1425 

Defoin-Platel, M., & Chami, M. (2007). How ambiguous is the inverse problem of ocean 
color in coastal waters? Journal of Geophysical Research, 112 

Dong, Q., Shang, S., & Lee, Z. (2013). An algorithm to retrieve absorption coefficient of 
chromophoric dissolved organic matter from ocean color. Remote Sensing of 
Environment, 128, 259-267 

Fichot, C.G., Kaiser, K., Hooker, S.B., Amon, R.M., Babin, M., Belanger, S., Walker, S.A., 
& Benner, R. (2013). Pan-Arctic distributions of continental runoff in the Arctic 
Ocean. Sci Rep, 3, 1053 

Friedland, K.D., Stock, C., Drinkwater, K.F., Link, J.S., Leaf, R.T., Shank, B.V., Rose, 
J.M., Pilskaln, C.H., & Fogarty, M.J. (2012). Pathways between primary 
production and fisheries yields of large marine ecosystems. PLoS One, 7, e28945 

Helms, J.R., Mao, J., Stubbins, A., Schmidt-Rohr, K., Spencer, R.G.M., Hernes, P.J., & 
Mopper, K. (2014). Loss of optical and molecular indicators of terrigenous 
dissolved organic matter during long-term photobleaching. Aquatic Sciences, 76, 
353-373 

Helms, J.R., Stubbins, A., Perdue, E.M., Green, N.W., Chen, H., & Mopper, K. (2013). 
Photochemical bleaching of oceanic dissolved organic matter and its effect on 
absorption spectral slope and fluorescence. Marine Chemistry, 155, 81-91 



57 

Helms, J.R., Stubbins, A., Ritchie, J.D., Minor, E., Kieber, D.J., & Mopper, K. (2008). 
Absorption spectral slopes and slope ratios as indicators of molecular weight, 
source, and photobleaching of chromophoric dissolved organic matter. Limnology 
and Oceanography, 53, 955-969 

Hiriart-Baer, V.P., Milne, J.E., & Marvin, C.H. (2011). Temporal trends in phosphorus and 
lacustrine productivity in Lake Simcoe inferred from lake sediment. Journal of 
Great Lakes Research, 37, 764-771 

Kaiser, K., & Benner, R. (2009). Biochemical composition and size distribution of organic 
matter at the Pacific and Atlantic time-series stations. Marine Chemistry, 113, 63-
77 

Kellerman, A.M., Guillemette, F., Podgorski, D.C., Aiken, G.R., Butler, K.D., & Spencer, 
R.G.M. (2018). Unifying Concepts Linking Dissolved Organic Matter Composition 
to Persistence in Aquatic Ecosystems. Environ Sci Technol, 52, 2538-2548 

Kellerman, A.M., Kothawala, D.N., Dittmar, T., & Tranvik, L.J. (2015). Persistence of 
dissolved organic matter in lakes related to its molecular characteristics. Nature 
Geoscience, 8, 454-457 

Kinsey, J.D., Corradino, G., Ziervogel, K., Schnetzer, A., & Osburn, C.L. (2018). 
Formation of Chromophoric Dissolved Organic Matter by Bacterial Degradation of 
Phytoplankton-Derived Aggregates. Frontiers in Marine Science, 4 

Kujawinski, E.B., Longnecker, K., Barott, K.L., Weber, R.J.M., & Kido Soule, M.C. 
(2016). Microbial Community Structure Affects Marine Dissolved Organic Matter 
Composition. Frontiers in Marine Science, 3 

Lee, Z., Carder, K.L., & Arnone, R.A. (2002). Deriving inherent optical properties from 
water color: a multiband quasi-analytical algorithm for optically deep waters. Appl 
Opt, 41, 5755-5772 

Lohrenz, S. (2000). A novel theoretical approach to correct for pathlength amplification 
and variable sampling loading in measurements of particulate spectral absorption 
by the quantitative filter technique. Journal of Plankton Research, 22, 639-657 

Lohrenz, S., Weidemann, A., & Tuel, M. (2003). Phytoplankton spectral absorption 
influenced by community size structure and pigment composition. Journal of 
Plankton Research, 25, 35-61 

Ma, X., & Green, S.A. (2004). Photochemical transformation of dissolved organic carbon 
in Lake Superior - an in-situ experiment. Journal of Great Lakes Research, 30 
(Supplement 1), 97-112 



58 

Macdonald, M.J., & Minor, E.C. (2013). Photochemical degradation of dissolved organic 
matter from streams in the western Lake Superior watershed. Aquatic Sciences, 75, 
509-522 

Mannino, A., Novak, M.G., Hooker, S.B., Hyde, K., & Aurin, D. (2014). Algorithm 
development and validation of CDOM properties for estuarine and continental shelf 
waters along the northeastern U.S. coast. Remote Sensing of Environment, 152, 
576-602 

Mannino, A., Russ, M.E., & Hooker, S.B. (2008). Algorithm development and validation 
for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic 
Bight. Journal of Geophysical Research, 113 

Maritorena, S., Siegel, D.A., & Peterson, A.R. (2002). Optimization of a semianalytical 
ocean color model for global-scale applications. Appl Opt, 41, 2705-2714 

Matsuoka, A., Babin, M., Doxaran, D., Hooker, S.B., Mitchell, B.G., Bélanger, S., & 
Bricaud, A. (2014). A synthesis of light absorption properties of the Arctic Ocean: 
application to semianalytical estimates of dissolved organic carbon concentrations 
from space. Biogeosciences, 11, 3131-3147 

Matsuoka, A., Hooker, S.B., Bricaud, A., Gentili, B., & Babin, M. (2013). Estimating 
absorption coefficients of colored dissolved organic matter (CDOM) using a semi-
analytical algorithm for southern Beaufort Sea waters: application to deriving 
concentrations of dissolved organic carbon from space. Biogeosciences, 10, 917-
927 

McManus, J., Heinen, E.A., & Baehr, M.M. (2003). Hypolimnetic oxidation rates in Lake 
Superior: Role of dissolved organic material on the lake’s carbon budget. 
Limnology and Oceanography, 48, 1624-1632 

Mentges, A., Feenders, C., Seibt, M., Blasius, B., & Dittmar, T. (2017). Functional 
Molecular Diversity of Marine Dissolved Organic Matter Is Reduced during 
Degradation. Frontiers in Marine Science, 4, 194 

Minor, E.C., Steinbring, C.J., Longnecker, K., & Kujawinski, E.B. (2012). 
Characterization of dissolved organic matter in Lake Superior and its watershed 
using ultrahigh resolution mass spectrometry. Organic Geochemistry, 43, 1-11 

Mobley, C. (1988). HydroLight. In  

Mouw, C.B., Barnett, A., McKinley, G.A., Gloege, L., & Pilcher, D. (2016). Phytoplankton 
size impact on export flux in the global ocean. Global Biogeochemical Cycles, 30, 
1542-1562 



59 

Mouw, C.B., Chen, H., McKinley, G.A., Effler, S., O'Donnell, D., Perkins, M.G., & Strait, 
C. (2013). Evaluation and optimization of bio-optical inversion algorithms for 
remote sensing of Lake Superior's optical properties. Journal of Geophysical 
Research: Oceans, 118, 1696-1714 

Mouw, C.B., Ciochetto, A.B., Grunert, B.K., & Yu, A.W. (2017a). Expanding 
understanding of optical variability in Lake Superior with a 4-year dataset. Earth 
System Science Data, 9, 497-509 

Mouw, C.B., Hardman-Mountford, N.J., Alvain, S., Bracher, A., Brewin, R.J.W., Bricaud, 
A., Ciotti, A.M., Devred, E., Fujiwara, A., Hirata, T., Hirawake, T., Kostadinov, 
T.S., Roy, S., & Uitz, J. (2017b). A Consumer's Guide to Satellite Remote Sensing 
of Multiple Phytoplankton Groups in the Global Ocean. Frontiers in Marine 
Science, 4 

Mouw, C.B., & Yoder, J.A. (2010). Optical determination of phytoplankton size 
composition from global SeaWiFS imagery. Journal of Geophysical Research, 115 

Mueller, J.L., Fargion, G.S., & McClain, C.R. (2003). Ocean optics protocols for satellite 
ocean color sensor validation. In, revision 4, vol. IV: Inherent Optical Properties: 
Instruments, characterizations, field measurements and data analysis protocols, 
NASA/TM-2003-211621/Rev4-Vol. IV (p. 76pp). National Aeronautical and Space 
Administration, Goddard Space Flight Center, Greenbelt, Maryland 

Myklestad, S.M. (1995). Release of extracellular products by phytoplankton with special 
emphasis on polysaccharides. Science of the total Environment, 165, 155-164 

Nelson, N.B., Siegel, D.A., Carlson, C.A., & Swan, C.M. (2010). Tracing global 
biogeochemical cycles and meridional overturning circulation using chromophoric 
dissolved organic matter. Geophysical Research Letters, 37 

Organelli, E., Bricaud, A., Antoine, D., & Matsuoka, A. (2014). Seasonal dynamics of light 
absorption by chromophoric dissolved organic matter (CDOM) in the NW 
Mediterranean Sea (BOUSSOLE site). Deep Sea Research Part I: Oceanographic 
Research Papers, 91, 72-85 

Organelli, E., Bricaud, A., Gentili, B., Antoine, D., & Vellucci, V. (2016). Retrieval of 
Colored Detrital Matter (CDM) light absorption coefficients in the Mediterranean 
Sea using field and satellite ocean color radiometry: Evaluation of bio-optical 
inversion models. Remote Sensing of Environment, 186, 297-310 

Romera-Castillo, C., Sarmento, H., Alvarez-Salgado, X.A., Gasol, J.M., & Marrase, C. 
(2011). Net production and consumption of fluorescent colored dissolved organic 
matter by natural bacterial assemblages growing on marine phytoplankton 
exudates. Appl Environ Microbiol, 77, 7490-7498 



60 

Siegel, D.A., Maritorena, S., Nelson, N.B., Hansell, D.A., & Lorenzi-Kayser, M. (2002). 
Global distribution and dynamics of colored dissolved and detrital organic 
materials. Journal of Geophysical Research: Oceans, 107, 21-21-21-14 

Silsbe, G.M., Behrenfeld, M.J., Halsey, K.H., Milligan, A.J., & Westberry, T.K. (2016). 
The CAFE model: A net production model for global ocean phytoplankton. Global 
Biogeochemical Cycles, 30, 1756-1777 

Stedmon, C.A., & Nelson, N.B. (2014). The optical properties of DOM in the ocean. 
Biogeochemistry of Marine Dissolved Organic Matter (Second Edition) (pp. 481-
508): Elsevier 

Sterner, R.W. (2010). In situ-measured primary production in Lake Superior. Journal of 
Great Lakes Research, 36, 139-149 

Stumpf, R.P., Culver, M.E., Tester, P.A., Tomlinson, M., Kirkpatrick, G.J., Pederson, B.A., 
Truby, E., Ransibrahmanakul, V., & Soracco, M. (2003). Monitoring Karenia 
brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other 
data. Harmful Algae, 2, 147-160 

Sydor, M., Gould, R.W., Arnone, R., Haltrin, V.I., & Goode, W. (2004). Uniqueness in 
remote sensing of the inherent optical properties of ocean water. Appl Opt, 43, 
2156-2162 

Tassan, S., & Ferrari, G.M. (2002). A sensitivity analysis of the “Transmittance-
Reflectance” method for measuring light absorption by aquatic particles. Journal 
of Plankton Research, 24, 757-774 

Trochta, J.T., Mouw, C.B., & Moore, T.S. (2015). Remote sensing of physical cycles in 
Lake Superior using a spatio-temporal analysis of optical water typologies. Remote 
Sensing of Environment, 171, 149-161 

Twardowski, M.S., Boss, E., Sullivan, J.M., & Donaghay, P.L. (2004). Modeling the 
spectral shape of absorption by chromophoric dissolved organic matter. Marine 
Chemistry, 89, 69-88 

Uitz, J., Stramski, D., Reynolds, R.A., & Dubranna, J. (2015). Assessing phytoplankton 
community composition from hyperspectral measurements of phytoplankton 
absorption coefficient and remote-sensing reflectance in open-ocean environments. 
Remote Sensing of Environment, 171, 58-74 

Urban, N.R., Auer, M.T., Green, S.A., Lu, X., Apul, D.S., Powell, K.D., & Bub, L. (2005). 
Carbon cycling in Lake Superior. Journal of Geophysical Research, 110 



61 

Vandermeulen, R.A., Mannino, A., Neeley, A., Werdell, J., & Arnone, R. (2017). 
Determining the optimal spectral sampling frequency and uncertainty thresholds 
for hyperspectral remote sensing of ocean color. Opt Express, 25, A785-A797 

Vantrepotte, V., Danhiez, F.P., Loisel, H., Ouillon, S., Meriaux, X., Cauvin, A., & 
Dessailly, D. (2015). CDOM-DOC relationship in contrasted coastal waters: 
implication for DOC retrieval from ocean color remote sensing observation. Opt 
Express, 23, 33-54 

Wei, J., Lee, Z., Ondrusek, M., Mannino, A., Tzortziou, M., & Armstrong, R. (2016). 
Spectral slopes of the absorption coefficient of colored dissolved and detrital 
material inverted from UV-visible remote sensing reflectance. Journal of 
Geophysical Research: Oceans, n/a-n/a 

Werdell, J., Franz, B.A., Bailey, S.W., Feldman, G.C., Boss, E., Brando, V., Dowell, M., 
Hirata, T., Lavender, S.J., Lee, Z., Loisel, H., Maritorena, S., Mélin, F., Moore, 
T.S., Smyth, T.J., Antoine, D., Devred, E., D’Andon, O.H.F., & Mangin, A. (2013). 
Generalized ocean color inversion model for retrieving marine inherent optical 
properties. Appl Opt, 52, 2019-2037 

Williamson, C.E., Overholt, E.P., Pilla, R.M., Leach, T.H., Brentrup, J.A., Knoll, L.B., 
Mette, E.M., & Moeller, R.E. (2015). Ecological consequences of long-term 
browning in lakes. Sci Rep, 5, 18666 

Wünsch, U.J., Stedmon, C.A., Tranvik, L.J., & Guillemette, F. (2018). Unraveling the size-
dependent optical properties of dissolved organic matter. Limnology and 
Oceanography, 63, 588-601 

Yamashita, Y., Nosaka, Y., Suzuki, K., Ogawa, H., Takahashi, K., & Saito, H. (2013). 
Photobleaching as a factor controlling spectral characteristics of chromophoric 
dissolved organic matter in open ocean. Biogeosciences, 10, 7207-7217 

Yamashita, Y., & Tanoue, E. (2008). Production of bio-refractory fluorescent dissolved 
organic matter in the ocean interior. Nature Geoscience, 1, 579 

Zhao, Z., Gonsior, M., Luek, J., Timko, S., Ianiri, H., Hertkorn, N., Schmitt-Kopplin, P., 
Fang, X., Zeng, Q., & Jiao, N. (2017). Picocyanobacteria and deep-ocean 
fluorescent dissolved organic matter share similar optical properties. Nature 
communications, 8, 15284 

 

 



62 

3 Deriving inherent optical properties from 
decomposition of hyperspectral non-water 
absorption 

3.1 Introduction 

Oceanic dissolved organic matter (DOM) comprises the largest pool of fixed carbon 
in the ocean, roughly equivalent to the reservoir of atmospheric CO2 (~670 Pg; Hansell et 
al. 2009; Ogawa et al. 2001). Yet, sources and cycling of DOM in the global ocean remain 
poorly constrained due to difficulty in assigning origin and tracking changes to a complex 
mixture of organic compounds composed of up to ~20,000 molecular formulas in a sample 
(Andrew et al. 2013; Mentges et al. 2017; Riedel and Dittmar 2014). A portion of DOM is 
optically active, colored dissolved organic matter (CDOM), and displays distinct spectral 
variability between uniquely sourced material, namely terrestrial and marine-derived, and 
different degradation pathways, such as microbial or photodegradation (Catalá et al. 2016; 
Danhiez et al. 2017; Helms et al. 2013; Helms et al. 2008; Zhao et al. 2017).  Due to its 
interaction with light, CDOM can be rapidly characterized using optical sensors and is 
observable from autonomous and satellite platforms (e.g. Siegel et al. 2005; Xing et al. 
2012). These observations are crucial to adequately model ocean physical and 
biogeochemical processes due to the influence of CDOM on distribution and spectral 
quality of light in the water column and heating of the surface ocean (Chang and Dickey 
2004; Dutkiewicz et al. 2015; Kim et al. 2016). Additionally, CDOM absorption (ag(l), 
m-1; l denotes wavelength) at visible wavelengths tracks dissolved organic carbon 
concentration ([DOC], mg×L-1) in coastal waters where a strong gradient of relatively 
degraded, terrestrial-derived material and conservative mixing produce a clear, observable 
signal across unique pools of CDOM (Cory and Kling 2018; Fichot and Benner 2011; 
Mannino et al. 2014; Stedmon and Markager 2003). This continuous dilution of ag(l) in 
coastal waters presents predictive capability of terrestrial biomarkers (e.g. lignin) using 
ag(l) due to unique spectral features present in terrestrial material relative to CDOM of 
marine origin (Fichot et al. 2016; Fichot et al. 2013; Helms et al. 2008; Vantrepotte et al. 
2015). While these relationships are strong in coastal waters, open ocean waters do not 
display a consistent relationship between ag(l) and [DOC], likely due to relatively low 
production rates and strong photodegradation in surface ocean waters (Helms et al. 2013; 
Nelson et al. 2010). 

Satellite remote sensing provides a means of estimating ag(l) through its influence 
on the amount of light leaving the water, observable from a satellite platform as spectral 
remotely-sensed reflectance (Rrs(l). However, due to the number of unknowns versus 
knowns, retrieval of distinct absorbing constituents, or inherent optical properties (IOP’s) 
that impact the spectral quality of Rrs(l), phytoplankton (aph(l), m-1), non-algal particulate 
(NAP) absorption (ad(l), m-1) and ag(l), requires assumptions or constraints imposed on 
solutions. Historically, this is typically addressed by lumping ag(l) and ad(l) into a single 
term, adg(l), as both approximately follow an exponential increase in absorption with 
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decreasing wavelength and the spectral slope parameter, Sdg, describes adg(l) spectral 
shape. Another near-universal assumption has been assuming a fixed value for Sdg. For past 
algorithms, adg(l) is retrieved using either an assumed Sdg ranging from 0.015-0.018 nm-1 
(Lee et al. 2002; Maritorena et al. 2002; Werdell et al. 2013), or a quasi-assumed value, 
where 0.015 nm-1 is initially assumed and then allowed to vary based on Rrs(l) at various 
wavelengths (e.g. 443 and 555 nm; Quasi-Analytical Algorithm (QAA), version 6; 
www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf). It is important to note 
that for this situation, 0.015 nm-1 is the lowest Sdg capable within the refined QAA. 
Alternatively, Sdg can be decomposed into Sd and Sg through the extended QAA approach 
of Dong et al. (2013), also providing a quasi-assumed Sg value and an assumed Sd value. 

Increasing observations of ag(l) have shown that Sg displays significant variability 
and is also capable of characterizing CDOM of unique source and degradation state 
(Danhiez et al. 2017; Grunert et al. 2018; Helms et al. 2008) . Beyond being linked to 
uniquely sourced material, the spectral shape of ag(l) has been linked to specific 
environmental conditions (e.g. phytoplankton blooms, nutrient conditions) that are not 
accurately quantified by changes in the magnitude of ag(l) at visible wavelengths (e.g. 412 
nm; Asmala et al. 2018; Danhiez et al. 2017). Considering that spectral variability in ag(l) 
can be attributed to specific production and degradation processes (Helms et al. 2008, 
2013) as well as different environmental conditions (Asmala et al. 2018), it is likely that 
this parameter contains very useful information regarding food web processes and marine 
carbon cycling relevant to understanding the balance of the marine DOM carbon reservoir. 

To date, satellite oceanographers have recognized the importance of retrieving Sg 
for a fuller understanding of large-scale biogeochemical processes but have been limited 
by multispectral satellite observing capabilities. Hyperspectral capabilities are currently 
primarily limited to in situ and airborne sensors, with past targeted observations available 
from the National Aeronautics and Space Administration’s (NASA) Hyperspectral Imager 
of the Coastal Ocean (HICO) and broad spatial resolution hyperspectral data available from 
the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography 
(SCIAMACHY) that is capable of characterizing unique phytoplankton functional groups 
at this spatial resolution (Bracher et al. 2009; Sadeghi et al. 2012). Future hyperspectral 
sensors with increased spatial and/or temporal resolution are planned for launch in the near 
future (~1-5 years) including the German Aerospace Center’s Environmental Mapping and 
Analysis Program (EnMAP) sensor and NASA’s Plankton, Aerosol, Cloud and ocean 
Ecosystem (PACE) sensor. Specifically, PACE is anticipated to provide 5 nm spectral 
resolution from 350-890 nm, offering an unprecedented view of the global ocean on 
climate-relevant spatial (1 km resolution) and temporal (2-3 day revisit time) scales. In 
theory, this sensor could provide remote estimation of Sg. However, we are unaware of any 
algorithms capable of retrieving aph(l) and adg(l) from total non-water absorption (at-w(l)) 
free of explicit assumptions regarding spectral shape of adg(l) or other parameters that 
influence spectral shape of IOP’s (e.g. slope of backscattering). Beyond estimation of Sdg 
and more accurate spectral retrievals of aph, such a method would provide clearer spectral 
features for the derivation of specific phytoplankton functional types, including Gaussian 
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fitting and second or fourth derivative analysis of phytoplankton pigments (Chase et al. 
2017; Vandermeulen et al. 2017; Wang et al. 2017). 

Here, we present a new algorithm that estimates Sdg, adg(l) and aph(l) free of 
explicit assumptions from at-w(l) using derivative analysis, iterative spectral evaluation and 
Gaussian decomposition of total non-water absorption spectra. We focus on accurate 
retrieval of Sdg and adg(l) to represent biogeochemical variability in NAP and CDOM 
absorption represented by the spectral shape and magnitude of adg(l). Results show good 
success in retrieving IOP magnitude and spectral shape. We discuss potential 
biogeochemical variability inferred by Sdg along with the significance of accurate retrievals 
of both adg(l) and aph(l) from hyperspectral absorption spectra. Results from the algorithm 
described here, Derivative Analysis and Iterative Spectral Evaluation of Absorption 
(DAISEA), suggest that hyperspectral satellite ocean color data will improve our ability to 
track biogeochemical processes affiliated with variability in adg(l) and Sdg. Finally, we 
discuss the likelihood of utilizing independent satellite datasets to separate adg(l) into ad(l) 
and ag(l). 

3.2 Methods 

3.2.1 Data 

In situ data were accessed from NASA’s SeaWiFS Bio-optical Archive and Storage 
System (SeaBASS, https://seabass.gsfc.nasa.gov/) on January 12, 2018 (Werdell et al. 
2003).  We focused our collection on data where aph(l), ad(l) and ag(l) were all measured 
coincidentally on a benchtop spectrophotometer within 10 m of the surface (Fig. 1). We 
initially quality controlled each set of absorption spectra by considering if any values were 
below zero for an individual spectra, calculating an offset for the most negative value and 
shifting the entire spectrum by this amount. In doing so, spectral shape is retained while 
removing poorly defined absorption values that result in negative algorithm solutions. We 
removed any spectra where Sdg was less than 0.004 nm-1, values unrealistic with historic 
observations and estimates (e.g. Siegel et al. 2002; Wang et al. 2005) . Additionally, spectra 
that had been sampled at a resolution less than 2 nm were not considered to ensure spectral 
shape was maintained when downsampling. After removing poor quality spectra, a total of 
4,787 spectra remained. These spectra were randomly split into training (n=3,434; Fig. 1a) 
and test datasets (n=1,353; Fig. 1b) so that training spectra accounted for ~75% of total 
spectra. All absorption spectra were subsampled to 5 nm data either through direct sub-
sampling or linear interpolation to avoid introducing artificial curvature, with the spectral 
range from 350-700 nm used (71 data points). Some spectra were not sampled down to 
exactly 350 nm but were measured at or below 355 nm (e.g. 350.7, 355 nm; n=79); for 
these spectra, we extrapolated to 350 nm using a discretized partial differential equation 
with an enhanced plate metaphor (D’Errico 2005). We focus on 5 nm spectral resolution 
here for an assessment of performance relative to the anticipated resolution of PACE. 
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Figure 1. Locations of spectra utilized in the (a) training dataset and (b) test dataset where color and size 
represent spectra grouped by varying aph(440) percent contribution. 

3.2.2 DAISEA Algorithm Development 

Our approach for decomposing at-w focuses on estimating adg(l) first through 
derivative analysis, optimizing the fit of adg(l) through iterative spectral evaluation, then 
estimating aph(l) using Gaussian decomposition. Steps described in this section are 
summarized in a schematic and accompanied by figures illustrating the primary 
components of each step (Fig. 2). Steps 1-7 evalute at-w(l) to optimize estimates of adg(l) 
and aph(l) and Step 8 is a Gaussian decomposition of at-w(l) using estimated adg(l) and 
aph(l) with constraints defined below. 

Step 1 

To first parameterize adg(l), the second derivative of at-w is calculated as 
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 [\3H%]
[6\

≈
3H%](6# − 23H%]D6̀ P + 3H%](6a)

∆6\
 (5) 

where ∆l indicates the wavelength resolution used to measure at-w(l) (here, 5 nm), with 
Eq. 1 following the approach of Tsai and Philpot (1998). Points where the second 
derivative equals 0 indicate inflection points of the spectrum (Fig. 2a; Lee et al. 2007). For 
at-w, these are points where individual phytoplankton pigments least impact the underlying 
exponential signal and thus are considered as the observed signal most likely representative 
of adg(l). These points are defined as ld0 and are found by rounding d2at-w(l) to 0 at the 
decimal corresponding to the relative median magnitude of the second derivative (e.g. 
median d2at-w(l)=0.005, then round to the third decimal place), which itself is a function 
of the magnitude of observed absorption. 

Step 2 

Using these wavelengths, an initial exponential expression is fitted following 

 3H%](642) = 3H%](62)$
%8(;9<%;<)	 (6) 

where l0 is the minimum wavelength in ld0 (Fig. 2b). S is used as the initial estimate of 
Sdg and adg(l0) is estimated as at-w(440) multiplied by the estimated contribution of adg(l) 
(decimal value) using a piece-wise exponential relationship derived from the training 
dataset as follows: 

 
%	3def(440) = 1.038$

%2.k\lmn
Jo(p(lll)
Jo(p(qr2)

s
where	

3H%](555)

3H%](680)
> 0.685 

(7) 

or 

 %	3def(440) = 2.088$
%Q.k{qn

Jo(p(lll)
Jo(p(qr2)

s
	where	

3H%](555)

3H%](680)
≤ 0.685 (8) 

and 

 %	345(440) = 100 −	%	3def(440)	 (9) 

The spectra for adg(l) is then estimated (Fig. 2b) as follows 

 345(6) = D3H%](440) ∙ %345(440)P	$
%89:(;%{{2)	 (10) 

Step 3 

To determine if the adg(l) estimate is feasible, we compare it to at-w(l): 
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 3NFG#4}J~(6) = 3H%](6) − 345(6) (11) 

If aresidual(l) is negative, an offset is calculated by finding the wavelength where adg(l) is 
most overestimated, from 

 345(62) = 3H%](62) − �3EV3H%](6#04) − 345(6#04)V	 (12) 

where	l0=lind corresponding to the wavelength where adg(l) is most overestimated. We 
then re-calculate adg(l) using the new l0 and the following expression: 

 345(6) = 345(62)$
%89:(;%;<)	 (13) 

If aresidual(l) is always positive, the previous variables - l0, adg(l0), Sdg – are maintained at 
the current estimated values (e.g. l0=440 nm; Fig. 2c). If aresidual(l) is negative at any point, 
aresidual(l) is re-calculated following Eq. 7 for the new estimated adg(l). If aresidual(l) is still 
negative at any point, Sdg is incrementally adjusted by +0.0001 nm-1 to a maximum 
adjustment of +0.011 nm-1. If a potential solution has not been found, Sdg is then 
incrementally adjusted by -0.0001 nm-1 to a minimum adjustment of -0.004 nm-1. The 
difference in adjustment and focus on positive adjustment values first is discussed further 
in Section 4.1.2. If no valid solution is found through this routine, the initial estimate of 
adg(l) is used; if a valid solution is found, that is the new adg(l) estimate (e.g. Fig. 2c). 

Step 4 

 Using the new or initial adg(l) estimate, aph(l) is estimated (Fig. 2d) following 

 3de(6) = 3H%](6) − 345(6)	 (14) 

Step 5 

To determine if adg(l) was estimated reasonably well, we consider the ratio of 
aph(350):aph(440), where a value greater than 1.5 is used to indicate whether a significant 
portion of the adg(l) signal is still present in the residuals. While some waters with a 
significant pigment contribution below 400 nm (e.g. mycosporine-like amino acids) may 
violate this rule, it is generally applicable following discussion in Section 4.1.2. 

 If aph(350):aph(440) is greater than 1.5, a blended estimate of adg(l) is produced by 
fitting residuals from 350-400 nm with an exponential model (Fig. 2e) following 

 3NFG#4}J~(6) = 3NFG#4}J~(62)$
%8ÄÅÇ*9ÉÑÖ(;%;<)	 (15) 

A new estimate of adg(l), denoted as adg2(l), is created from 

 345\(6) = 345(6) + 3NFG#4}J~(6)	 (16) 
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A new Sdg is re-calculated for adg2(l) and	the	next	iteration	of	adg(l) is estimated from 

 345(6) = D3H%](440) ∙ %345(440)P	$
%89:_èÅp(;%{{2)	 (17) 

The adg(l) estimated from Eq. 13 is then iteratively evaluated within by adjusting Sdg and 
assessing whether adg(l) > at-w(l) at any wavelength. If it is, an offset is calculated 
following Eq. 8 where adg(l) is most overestimated (Step 3, Fig. 2). If this step is 
performed, a new l0 and adg(l0) is estimated at the wavelength of the largest overestimation 
and adg(l0) is no longer set to the empirically-derived estimate of adg(440). These steps are 
performed in a step-wise manner until aphy(350):aphy(440) is less than 1.5 (Fig. 2f,g). 

Step 6 

 Gaussian decomposition of the optimized residual from Eq. 7 is performed. For 
this, we utilize a generic version of Eq. 1 to calculate the second derivative of estimated 
aph(l) (Fig. 2h). The second derivative is smoothed with a linear Savitzky-Golay filter 
using a smoothing window as close to 9 nm as possible with the provided spectral 
resolution (e.g. 10 nm here). The smoothed second derivative is inverted and local maxima 
are identified using a peak finding function, where local maxima are identified as any value 
greater than the value before or after and peak width is identified as the best Gaussian fit 
of respective minima. These identified peaks are used as an initial estimate of the number 
of peaks and each peak’s location and width (Fig. 2h,i) with each Gaussian curve modeled 
following 

 ê(E, ", í, ì) = "$%
(î%ï),

\ñ 	 (18) 

where σ (nm) is the width of the curve, φ (m-1) is the height of the Gaussian curve defined 
as " = Q

ñ√\ò
 and µ (nm) is the peak center position. 

Step 7 

Peak height is then estimated by prioritizing peaks based on their relative 
prominence, identified as the height determined from peak identification in the previous 
step. When identified in this manner, pigments that do not overlap, or overlap little, are 
identified first, followed by peaks that are observed as a shoulder (e.g. chlorophyll-a peak 
at 676 nm is typically prioritized for fitting first). Based on the order of prominence, aph(l) 
is iteratively fit following 

 3de*(6) = 3de*(ô(6) −C "#$
%
(î%ï*)

,

\ñ*
,

0

#1Q
 (19) 

Due to the additive nature of fitting Gaussian curves, there is potential for some peaks to 
have a negative height. After initially estimating the shape of each Gaussian curve, we filter 
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out peaks with negative heights and we cap the total possible number of peaks at 16 ; most 
Gaussian decomposition schemes assume the presence of ~12 peaks (e.g. Hoeppfner and 
Sathyendranath 1993; Wang et al. 2016; Chase et al. 2017) . These studies have considered 
similar peak locations with minor differences accounting for a total of 16 unique peak 
locations in the literature. From this, we assumed if more than 16 peaks are present and all 
have a positive peak height, some identified peaks are noise or signals not affiliated with 
phytoplankton pigments. We sort for likely pigment signals by prominence, using the same 
method described for peak height, and select the 16 most prominent identified peaks. Next, 
we use our estimated Gaussian curves as input into a least squares Gaussian decomposition 
model that best fits our initial aph(l) estimate (Eq. 10) with our estimated Gaussian curves 
and fitting constraints as described in Step 8 to define an updated set of Gaussian curves 
(Fig. 2j) following the expression: 

 3de(6) =C "#$
%
(î%ï*)

,

\ñ*
,

0

#1Q
 (20) 

Step 8 

 Results from Steps 1-7 provide the start point for a combined retrieval of adg(l) and 
aph(l) from at-w(l). Using the current estimate of adg(l) from Steps 1-7 and an estimate for 
each identified Gaussian curve fitted to aph(l), a least squares fitting approach is performed 
using the following expression: 

 3H%](6) = 345(62)$
%89:(;%;<) +C "#$

%
(î%ï*)

,

\ñ*
,

0

#1Q
 (21) 

Analogous to methods used for identifying poorly constrained features that deviate from 
an underlying exponential signal presented elsewhere (e.g. Massicotte and Markager 
2016), the model decomposes at-w(l) by utilizing a baseline exponential (Eq. 9) 
accompanied by a pre-defined number of Gaussian components based on previous steps 
(Eq. 16). This method differs from other Gaussian decomposition methods applied to 
particulate absorption (ap), in that those methods typically have a pre-defined number of 
Gaussian components based on analysis of separate aph(l) for the respective system (e.g. 
Chase et al. 2013; Wang et al. 2016). This methodology fits primary pigments with width 
estimated from spectral features identified in the second derivative of estimated aph(l), 
allowing for a constrained solution to decomposing at-w(l) while not assuming the presence 
any specific types of phytoplankton. Parameters in Eq. 17 are constrained utilizing results 
from Steps 1-7: adg(l0) can vary from 0 m-1 to at-w(l0), Sdg can vary by -0.002 nm-1 to 
+0.003 nm-1 from the input estimate, Gaussian peak width can vary from input width to 3 
times the input width, Gaussian peak height can vary by 0.25 times input height to 3 times 
input height and µ is fixed at the identified location due to high confidence in the second 
derivative analysis. DAISEA output is as follows: adg(l) is that estimated in Eq. 17, while  
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Figure 2. Schematic and figures illustrating primary steps for the Gaussian decomposition algorithm. This 
schematic is provided to aid in visualizing and organizing the steps detailed in the accompanying text (Section 
2.2). Each figure illustrates the step as indicated for an example spectra. Not all spectra require all the steps 
depicted, while some spectra walk through all the steps (e.g. Fig. 2c shows a successful first guess, while 
some spectra required an iteration at this step). 
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aph(l) is the difference between observed at-w(l) and adg(l) from Eq. 17 (Fig. 3). Step 8 
ensures coherence between the exponential signal and overlying deviations due to aph(l) 
as constrained through Steps 1-7 in a flexible manner, while not assuming that aph(l) can 
be best parameterized by 6-8 Gaussian curves. Fitting of secondary features is possible but 
also increases the probability of over-constraining a solution (i.e. less flexibility is 
adjustments to adg(l)). 

 
Figure 3. Algorithm output for the example spectra depicted in Fig. 2. Gray dashed lines indicate the 
estimated (a) adg(l) and (b) aph(l) used as input into the least squares Gaussian decomposition of observed 
at-w(l) and black dashed lines indicate the respective observed IOP. For (a) and (b), respective colored lines 
display algorithm output. For (c), the brown line represents adg(l) algorithm output, the green line represents 
adg(l) + aph(l) algorithm output and the black line with circles indicates observed at-w(l). This example shows 
how a Gaussian component can be fitted to the residuals derived from Step 5 (Fig. 2), but is minimized due 
to a better fit of observed at-w(l) with an exponential curve. 
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3.2.2.1 Low aph(l) waters 

We found that waters dominated by adg(l) were best decomposed by fitting an 
initial exponential function and adjusting to a realistic solution following Eq. 7 and 8. 
These cases are identified after Eq. 3 and 4; waters are considered dominated by adg(l) 
where the ratio of at-w(555):at-w(680) > 2.528 (the empirical value indicating aph(440) < 
10%). For such situations, the algorithm opts out of the Gaussian decomposition routine 
and follows a simplified routine analogous to Steps 2-4, where Sdg is considered equivalent 
to S calculated for at-w (Eq. 2), and magnitude is adjusted so that adg(l) ≤ at-w(l). While Eq. 
3 and 4 are empirical, the basis for these relationships and the algorithm fitting routine in 
general follows expected spectral relationships between wavelengths assuming varying 
contributions of adg(l) and aph(l) and is currently the basis for fitting Sdg in current non-
empirical schemes (e.g. Matsuoka et al. 2013; see section 4.1.2 for further discussion). 
Noise in this relationship is explained by variability in the exact shape of aph(l) due to 
varying phytoplankton composition, physiology and pigment packaging effects (Bricaud 
and Morel 1986; Bricaud et al. 1983; Ciotti et al. 2002; Johnsen et al. 1994) as well as 
variability in the spectral shape and features of ag(l) and ad(l) (Grunert et al. 2018). As the 
algorithm is currently optimized for a global approach, users may find that adjusting the 
empirical relationship used to initially estimate adg(440) and filter out adg(l) dominant 
spectra, as well as adjusting the value of 1.5 for the ratio of aph(350):aph(440) (Step 5), for 
a value more representative of their study region results in better algorithm performance. 

3.2.3 Data Analysis 

To assess the performance of DAISEA across a variety of water conditions, we 
separated spectra into eight different categories based on the percent contribution of 
aph(440) relative to at-w(440), with the distribution of spectra within these classes shown in 
Fig. 1. Classes ranged from <10% to >70% contribution. This classification scheme 
emphasizes the relative, not the absolute, contribution of phytoplankton to the overall 
absorption signal. Thus, waters where aph(440) is the dominant contributor to total 
absorption are not limited to highly productive waters. In this sense, algorithm performance 
is not assessed across classic definitions of Case 1 or Case 2 waters (Morel and Prieur 
1977). Rather, the only group dominated by coastal and inland waters was the group where 
aph(440) < 10%. 

To determine whether aph(l) or adg(l) was retrievable we calculated the absolute 
error in the opposing metric and compare it to the observed value. For example, if aph_obs(l) 
> |adg_obs(l)-adg_est(l)|, we consider it retrievable at that wavelength. Within each %aph(440) 
group, we summed the total number of instances at each wavelength where aph(l) or adg(l) 
was greater than the absolute error in the opposing metric and divided by the total number 
of spectra to get a percent retrievable metric. We also calculated root mean square error 
(RMSE), normalized RMSE (NRMSE), bias, mean absolute error (MAE) and unbiased 
absolute percent difference (UAPD) using the following expressions: 
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3.3 Results 

3.3.1 DAISEA Performance 

Across the eight categories, DAISEA performed best in waters where aphy(440) 
contributed 50-60% of total absorption, relatively consistent with results for the training 
data set (aphy(440) of 40-50%), although performance was quite good for aphy(440) ranging 
from 20-60%, outside of the 350-400 nm spectral range (NRMSE < 20% for most 
wavelengths). The threshold of use for estimating adg(l) with DAISEA appears to be when 
aph(440) contributes < 70%; for these conditions, adg(l) is estimated with NRMSE < 20% 
from 350-650 nm. NRMSE for aph(l) was < 20% for the majority of wavelengths between 
400-650 nm when considering conditions where aph(440) contributed more than 10%. This 
was also consistent when considering the retrievability of aph(440) under different 
conditions and can be considered as the threshold for estimating aph(440). Sdg uncertainty 
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increased with increasing contribution of aph(440); however, error was reasonable across 
all water conditions and estimates (Table 1). 

Table 1. Median and distribution of observed Sdg (1st and 3rd quartile) delineated by percent 
aph(440) contribution. Relative accuracy of estimated Sdg is presented as the median and 
distribution of absolute error (estimated Sdg – observed Sdg). 

Observed Sdg (nm-1)  Relative estimated Sdg accuracy (nm-1) 

1st quartile Median 3rd quartile aph(440) 1st quartile Median 3rd quartile 

0.0146 0.0153 0.0161 <10% -0.0003 -0.0001 -0.0001 

0.0143 0.0165 0.0176 10-20% -0.0015 -0.0010 +0.0004 

0.0141 0.0156 0.0175 20-30% -0.0010 -0.0001 +0.0013 

0.0127 0.0142 0.0159 30-40% -0.0015 +0.0001 +0.0017 

0.0126 0.0140 0.0150 40-50% -0.0024 -0.0005 +0.0016 

0.0128 0.0146 0.0160 50-60% -0.0018 -0.0003 +0.0021 

0.0120 0.0138 0.0167 60-70% -0.0024 -0.0007 +0.0005 

0.0139 0.0191 0.0211 >70% -0.0037 -0.0022 -0.0002 

We present general algorithm performance within each category by comparing the 
mean observed value at each wavelength relative to the mean estimated value at each 
wavelength (Fig. 4). It is evident from these graphs that the algorithm is biased to 
overestimate aphy(l) from 350-400 nm for spectra where aphy(440) is less than 50%. For 
spectra where aphy(440) contributes less than 10%, aphy(440) is poorly resolved in inland 
and coastal waters, which is not surprising given the small contribution of aph(l) to the 
overall absorption budget. In these cases, the magnitude of adg(l) is typically quite high, 
with adg(350) often greater than 10 m-1. Waters where aphy(440) contributes from 10-20% 
also often failed, as the empirical relationship often miscategorized these spectra as having 
aph(440) < 10% resulting in the assumption that the majority of at-w(440) could be 
accurately modeled with an exponential model. This highlights the primary drawback of 
utilizing empirical relationships, resulting in more than half of the aphy(l) estimates in the 
10-20% aph(440) group  to have negative values at wavelengths greater than 650 nm, 
outside of the chlorophyll-a (Chl) absorption peak at 676 nm (typically assigned to 680 nm 
within the algorithm framework). While aphy(l) was typically overestimated when it was a 
non-dominant contributor, aphy(l) was generally underestimated when it was a dominant 
contributor. 
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Figure 4. Mean performance of the algorithm for all spectra within each group of spectra delineated by 
aph(440) percent contribution relative to mean observed (a,c,e,g,i,k,m,o) aph(l) and (b,d,f,h,j,l,n,p) adg(l). 

Performance metrics were also delineated by aph(440) contribution (Fig. 5). Across 
all groups, adg(l) was retrievable >80% of the time for wavelengths < 450 nm (Fig. 5a). 
For waters where adg(l) contributed greater than 60%, it was retrievable at a rate of >80% 
for all wavelengths up to 650 nm. For aph(l), local maxima in retrieval at the chlorophyll-
a absorption peaks (~440 and 680 nm within DAISEA) were observed for all waters, with 
these wavelengths displaying a retrievability >80% for waters where aph(440) contributed 
>10% (Fig. 5b). Relative error for aph(l) and adg(l) was parameterized as NRMSE and 
displayed excellent performance for both parameters across most wavelengths and 
environments. For all conditions except aph(440) > 70%, adg(l) had a mean error of less 
than 20% for wavelengths from 350-650 nm (Fig. 5c), while aph(l) error was generally less 
than 20% for these wavelengths when aph(440) contributed > 10% (Fig. 5d). As seen in 
Fig. 4, aph(l) was biased to greater than observed values when it was a non-dominant 
contributor at 440 nm and was biased towards values less than observed when it was a 
dominant contributor at 440 nm, and vice versa for adg(l) (Fig. 5e). Mean absolute error 
generally decreased as the contribution of aph(440) increased (Fig. 5f). 
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Figure 5. Performance metrics for each group delineated by aph(440) percent contribution (indicated by color, 
from tan to dark green). Each plot corresponds to (a) percent retrievable aph(l), (b) percent retrievable adg(l), 
(c) aph(l) %NRMSE, (d) adg(l) %NRMSE, (e) aph(l) bias (adg(l) bias represented as inverse of each line) and 
(f) mean absolute error. 

3.3.2 Sdg Estimation 

One of the primary motivators for developing DAISEA was to accurately retrieve 
Sdg without any assumptions regarding spectral shape. Our results suggest that this is 
possible across a variety of optical conditions with a reasonable to excellent degree of 
accuracy, depending on the relative contribution of adg(l). Across the different groups of 
varying aph(440) contribution, median error in Sdg varied from 0.9-17.7%, with third 
quartile errors ranging from 2.4-39.2% (Fig. 6a). Mean Sdg observed across all spectra in 
the test dataset was 0.0147 nm-1 compared to a mean estimated value of 0.0150 nm-1, while 
median observed and estimated Sdg was 0.0152 and 0.0153 nm-1, respectively. The relative 
error affiliated with each of these metrics suggests a very reasonable degree of accuracy 
relevant for estimating biogeochemical variability affiliated with CDOM production and 
degradation processes (see section 4.2). Across individual groups, we evaluated the 
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different errors and present anticipated accuracy for Sdg (Table 1). For most groups, median 
error was << 0.001 nm-1 and absolute errors affiliated with the 1st and 3rd quantiles ranged 
up to 0.0037 and 0.0021 nm-1, respectively but were typically much smaller. We also 
considered distribution of error in Sdg across all groups and it followed a predominantly 
normal distribution (data not shown), without an obvious bias between observed and 
estimated Sdg regardless of percent aph(440) contribution (Fig. 6b). 

 
Figure 6. (a) Unbiased absolute percent difference of Sdg for each grouping delineated by aph(440) percent 
contribution, indicated by the color (see legend) and (b) distribution and relationship between observed and 
estimated Sdg, with marker color indicating %aph(440) and the dashed black line (--) representing the 1:1 line. 

Previous research has considered the use of UV wavelengths for estimating adg(l) 
as well as Sdg due to the reduced influence of aph at these wavelengths (Wei et al. 2016). 
While the wavelength range used to estimate Sdg influences its value on adg(l)(e.g. 
Twardowski et al. 2004), satellite approaches focus on utilizing an Sdg value most 
applicable across visible wavelengths to maximize the accuracy of adg(l) estimation, as 
variability in this spectral range (400-700 nm) is typically quite small regardless of which 
wavelengths are used (e.g. S400:500 or S400:700). Significant spectral variability does occur 
from 350-400 nm (Helms et al. 2008); thus, we considered whether our approach could be 
simplified by focusing only on UV wavelengths (350-400 nm) to accurately retrieve Sdg 
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and maintain an accurate estimation of spectral variation of both adg(l) and aph(l) at visible 
wavelengths. We found that overall performance was decreased by only focusing on UV 
wavelengths due to the increasing rate of influence of aph(l) approaching 400 nm (see 
Section 4.1.2 for discussion) as well as a general bias towards larger S350:400 values relative 
to S350:700 on the same spectra, a relationship seen across all spectra (training and test 
datasets; Fig. 7). From this, we only focused on retrieving Sdg optimized for all 
wavelengths. It is very likely that separately retrieving S350:400 will carry value, in addition 
to information retrieved by S350:700 (Grunert et al. 2018). 

 
Figure 7. Probability density distribution plot displaying the typically positive bias of S350:400 relative to 
S350:700 individual adg(l) spectra. Colorbar indicates the number of spectra per bin and the dashed black line 
(--) represents the 1:1 line. 

3.3.3 Consistency in Gaussian Features 

We considered the accuracy of our Gaussian component locations within DAISEA by 
comparing to Gaussian component locations identified on observed aph(l) following the 
same approach for the test dataset (Fig. 8). Overall, fewer Gaussian components were 
identified in the aph(l) estimated within the algorithm (total peaks=7,539; 5.6 
peaks/spectra) than were fitted on observed aph(l) spectra (total peaks=8,794; 6.5 
peaks/spectra). However, when considering DAISEA output, the number of fitted peaks 
was higher than for the observed aph(l) spectra (total peaks=10,394; 7.7 peaks/spectra). 
Since aph(l) estimated from the algorithm is derived from the smoothed residuals of at-w(l) 
– adg_est(l), this means that the additional noise in the spectra is derived from deviations in 
ad(l) and ag(l) not accounted for by a strictly exponential fit. We discuss potential reasons 
for an increase in fitted peaks in DAISEA output over the observed in Section 4.3, as well 
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as fitting significantly fewer peaks under our approach than other Gaussian decomposition 
approaches (e.g. Chase et al. 2013). 

 
Figure 8. Distribution of identified peak locations for (a) observed aph(l) and (b) aph(l) 
estimated from at-w(l). Overall, identified peaks were quite consistent between the two 
signals displaying the strength of the scheme for initial estimates and constraints used for 
the Gaussian decomposition model. 

3.4 Discussion 

3.4.1 DAISEA 

3.4.1.1 Application 

As evidenced here and elsewhere, hyperspectral ocean color data theoretically 
provides a means for estimating more variables in a less constrained manner (Dierssen et 
al. 2015; Uitz et al. 2015; Vandermeulen et al. 2017; Wang et al. 2017). Global variability 
in water optical properties is significant yet the non-uniqueness of Rrs(l) hampers 
consistent interpretation across both empirical and semi-analytic methods (Babin et al. 
2003; Bricaud et al. 1995; Grunert et al. 2018; Lee et al. 2002; Mannino et al. 2014; Mélin 
and Vantrepotte 2015). Previous concepts for working around this issue, particularly in 
light of multispectral limitations, have included screening Rrs(l) to most likely cases based 
on optical water types, linear matrix inversions and neural networks ((Brando et al. 2012; 
Hieronymi et al. 2017; Mélin and Vantrepotte 2015; Trochta et al. 2015). Increasingly, 
independent satellite parameters are used to compare IOP’s or derived products, 
particularly satellite-based Light Detection And Ranging (lidar) systems and ocean color 
remote sensing (Behrenfeld et al. 2013; Behrenfeld et al. 2016). Lidar is a proposed sensing 
technology for PACE, offering the potential of hyperspectral absorption and lidar on-board 
the same satellite. 
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Ideally, step-wise, iterative approaches can be used to analyze a signal and retrieve 
IOP’s with independent satellite observations used for cross-validation. This approach may 
seem quite optimistic but appears increasingly likely. NASA’s Cloud-Aerosol Lidar with 
Orthogonal Polarization (CALIOP) sensor, despite focusing on retrieval of atmospheric 
products, provides a means of estimating particle absorption and backscattering in the 
upper surface ocean. By combining hyperspectral ocean color retrieved IOPs with IOP 
estimates derived from independent sensors such as lidar, it seems likely that an iterative, 
step-wise approach could be used to assess each retrieved parameter and the likelihood of 
co-occurrence (e.g. lidar-determined particulate backscattering magnitude and/or slope 
alongside an ocean color estimated aph(l)), allowing for further constraining solutions 
using direct observations, rather than pre-defined relationships. Taking this a step further, 
we suggest that accurate estimates of individual parameters can help inform each other, 
e.g. observations of aph(l) indicative of nutrient stress and affiliated Sg values consistent 
with this observation, or ratios of bbp(l)/ap(l) to indicate particulate composition, size 
distribution and bloom state (Asmala et al. 2018; Behrenfeld and Milligan 2013; 
Neukermans et al. 2016). Some work has considered the ability to more effectively 
constrain adg(l) and Sdg with UV wavelengths (Wei et al. 2016); research in this regard is 
relatively limited when compared to that addressing aph(l), despite dissolved organic 
matter accounting for ~98% of total organic carbon in the global oceans (Bishop 1999; 
Gardner et al. 2006) and the ability of optics to effectively characterize a large degree of 
production and degradation processes occurring in the global ocean (see Section 4.2 for a 
detailed discussion). We show here that accurate retrieval of Sdg free of explicit 
assumptions is possible within a step-wise framework, providing a novel, unbiased metric 
for further characterizing ocean biogeochemical processes with hyperspectral satellite data. 

3.4.1.2 General Framework and Empirical Relationships 

The general premise of DAISEA is that adg(l) can be accurately modeled using an 
exponential model and that deviations from this exponential model are solely due to aph(l). 
There are alternate explanations for both of these assumptions (e.g. Cael and Boss 2017; 
Catalá et al. 2016); however, there is biogeochemical significance in Sdg, while 
phytoplankton would presumably produce the largest deviation from an exponential signal 
as observable from satellite ocean color data. Beyond these basic assumptions, we also 
considered the relationship between adg(l) and aph(l) within a theoretical framework (Fig. 
9). Based on this framework, it is important to recognize how varying contributions of each 
component will inherently lead to specific biases. For example, we noted that estimating 
S350:400 did not improve algorithm performance despite the recognition that aph(l) typically 
has a limited role in total absorption at these wavelengths even when it is a dominant 
contributor at 440 nm. This is due to a very strong influence of aph(l) on absorption at 400 
nm relative to 350 nm for most aph(l); since an exponential model is a relatively basic, 
least squares fit this sudden bias at one end of the spectral range decreases Sdg estimates. 
This is also why we increased estimates of Sdg first, then alternated to decreasing Sdg, as an 
exponential fit of at-w will produce lower S values than that observed in Sdg when aph(l) is 
a contributor, particularly when aph(440) > 10%. Finding where the second derivative of at-
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w(l) equals 0 and fitting an exponential at these points minimizes this impact (essentially 
“cutting through” primary pigment features for a least squares fit); however, there was a 
consistent bias towards lower Sdg values as aph(440) contribution increased, as expected. 
The general framework illustrated in Fig. 9 is also the justification for setting a ratio of 1.5 
to aph(350):aph(440); when the residual used to estimate aph(l) had a ratio higher than this, 
it was almost always indicative of a significant portion of the adg(l) signal remaining in the 
residual. 

 
Figure 9. A theoretical representation of varying spectral shape of at-w(l) under varying contributions of 
adg(l) and aph(l). The base adg(l) and aph(l) spectra used for each curve are taken from measured spectra. We 
utilized this theoretical framework to develop the algorithm, namely understanding how changes in aph(l) 
percent contribution will inherently impact estimates of Sdg, how this inherent bias is impacted by 
wavelengths used and how to assess whether adg(l) has been accurately retrieved from at-w(l) free of an 
empirical relationship. 

 In short of independent variables to validate each component of interest, some 
explicit assumptions are required within any algorithm framework. Here, we chose to limit 
our solutions by constraining initial adg(440) estimates by the empirical relationship 
between at-w(555)/at-w(680) from the training dataset (Fig. 10a) and a theoretical ratio of 
1.5 for aresidual(350)/aresidual(440) (Eq. 7) to determine whether the contribution of adg(l) to 
at-w(l) from 350-400 nm had been reasonably estimated. These relationships do not 
explicitly dictate the final product, but guide the algorithm to reasonable estimates, at 
which point fitting is not constrained by these specific values. They do, however, leave an 
impact on how results are constrained. As we discussed previously, empirical relationships 
can often fall short of their intended accuracy. Despite a similar optical and geographical 
distribution between the training and test datasets (Fig. 1), the piece-wise exponential 
relationship derived from the training dataset to predict aph(440)/adg(440) contribution to 
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at-w(440) (r2=0.91, RMSE=0.068) did not predict the same relationship nearly as well for 
the test dataset (r2=0.58, RMSE=0.110; Fig. 10b). Additionally, this relationship for the 
training dataset is not perfect, likely due to differences in phytoplankton community 
composition, affiliated pigment packaging and spectral variability in adg(l) affiliated with 
varying CDOM composition and NAP particle composition (Babin et al. 2003; Bricaud et 
al. 1995; Wünsch et al. 2018). We did adjust the theoretical value of 1.5 but algorithm 
results were not very sensitive to changes in this parameter to values less than 1.5. This is 
primarily due to the fact that a significant exponential signal can remain in the aph(l) 
estimate used in the Gaussian decomposition of at-w(l) and the signal will be removed due  

 
Figure 10. Relationship between at-w(555)/at-w(680) and aph(440) contribution for the (a) training dataset, 
where the piecewise exponential relationship used in the algorithm is represented by the red line, blue points 
indicate fitted data and gray points indicate values excluded from model fitting (r2=0.91, RMSE=0.068). 
Outliers were defined as 1.5·1st /3rd quartile and were used to remove the influence of the large spread in data 
points where aph(440) contributed less than 10%, as these points represented nearly 25% of the dataset. (b) 
Test dataset points relative to the piecewise exponential relationship derived from the training dataset, 
displaying the primary weakness in empirical relationships (r2=0.58, RMSE=0.110). 
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to a much better fit by incorporating this signal into an exponential model rather than 
attempting to fit with a Gaussian curve. However, this step is crucial as it: 1) further 
constrains Sdg to a more accurate solution and 2) inclusion of a Gaussian component in the 
aph(l) estimate requires fitting of this component within our scheme; no Gaussian 
components are dropped, as this would not provide for consistent and stable solutions. 
Thus, estimating adg(l) to the best ability results in fewer erroneous assignments of 
Gaussian components. Adjusting this value for a more regionally reflective value is quite 
easy within the provided code (Section 2.2.2). We maintained a value of 1.5 to account for 
some spectra that contain pigments below 400 nm (e.g. mycosporine-like amino acids) 
while maintaining strong performance in spectra without these pigments. 

3.4.2 CDOM 

Previous studies have shown that proper characterization of Sdg variability within a 
regional system accounts for an equivalent improvement in algorithm performance relative 
to optimizing multiple variables simultaneously, namely chlorophyll-normalized aph(l), 
NAP particle size distribution and Sdg (Organelli et al. 2016). For many systems, the bulk 
of Sdg variability is driven by Sg due to a relatively limited range of Sd values (typically 
0.06-0.015 nm-1) and a low contribution of ad(l) to the total adg(l) signal (Babin et al. 2003; 
Nelson et al. 1998). Sg, in contrast, can vary from 0.01-0.03 nm-1 for most systems, with 
variability up to 0.05 nm-1 depending on the spectral range used to calculate Sg (Grunert et 
al. 2018). As seen in our results, properly characterizing Sg when ad(l) << ag(l), and Sdg 
when ad(l) » ag(l) is crucial to accurately estimating aph(l) spectral shape. 

Beyond accurate retrievals of aph(l), variability in Sg can be used to characterize 
CDOM source and relative degradation state while also displaying a relatively consistent 
relationship with bulk molecular weight of the CDOM pool (Danhiez et al. 2017; Helms et 
al. 2013; Helms et al. 2008; Wünsch et al. 2018). Typically, lower Sg values indicate 
terrestrial material or material with a higher humic content and molecular weight (< ~0.015 
nm-1) while marine-derived material typically displays a Sg that varies from 0.015-0.03 nm-

1, depending on source and degradation state (Granskog 2012; Grunert et al. 2018; Wünsch 
et al. 2018). Narrow range Sg displays strong predictive power when considering molecular 
weight (e.g. S275:295; Helms et al. 2008); recent consideration of broad wavelength Sg (e.g. 
S300:600) shows these metrics have similar trends with CDOM molecular weight and 
degradation state, at least in observed samples (Stedmon and Nelson 2014; Wünsch et al. 
2018). Across a variety of spectral ranges, mean Sg has been observed to range from 0.014-
0.048 nm-1 (S275:295) to 0.014-0.023 nm-1 (S350:400) across inland waters and Longhurst 
biogeochemical provinces (Grunert et al. 2018; Longhurst 2006). Additionally, 
consideration of samples along river transects have shown changes in Sg varying from 
~0.015-0.022 nm-1 and CDOM of different bulk molecular weight sampled from four 
ecologically distinct lakes displayed differences in Sg varying from ~0.015-0.021 nm-1 for 
S350:400 and S300:600 metrics (Helms et al. 2008; Wunsch et al. 2018). DAISEA estimated 
Sdg from 350-700 nm at a resolution relevant to these Sg ranges (Fig. 6; Table 1). While not 
identical metrics, this suggests that further separation of this metric into Sd and Sg can still 
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provide estimates of Sg at a resolution that carries confidence for estimating 
biogeochemical variability estimated by Sg at a global scale. 

Across strong gradients in ag(l) magnitude (e.g. coastal to open ocean transects), 
ag(l), Sg and [DOC] strongly covary (Fichot et al. 2013; Kowalczuk et al. 2010). This has 
resulted in many empirical and semi-analytical approaches that link ag(l) at a reference 
wavelength to rates of change in Sg and [DOC] (Fichot and Benner 2011; Fichot et al. 2014; 
Mannino et al. 2014; Mannino et al. 2008; Matsuoka et al. 2013; Vantrepotte et al. 2015). 
The utility of these relationships is the fact that Sg is relatively stable for high ag(l) values, 
resulting in coherent variability across Sg calculated at various spectral ranges and ag(l) at 
visible wavelengths (Babin et al. 2003; Grunert et al. 2018). However, the relationship 
between ag(l) at visible wavelengths (e.g. 412 or 443 nm) and Sg and [DOC] does not 
generally hold up in most ocean environments, particularly the open ocean, where marine-
produced CDOM has a different spectral signature, is produced at much lower rates and 
where degradation processes can dominate cycling for extended periods (Green and Blough 
1994; Grunert et al. 2018; Meler et al. 2016; Nelson et al. 2010).  

 Retrieval of ag(l) from ocean color remote sensing has been relevant to 
understanding distribution and spectral quality of light in the water column, magnitude of 
CDOM related to net production or degradation and ocean heating (Kim et al. 2016; Kim 
et al. 2015; Nelson and Siegel 2013; Swan et al. 2013). The de-coupling of ag(l) and Sg in 
the open ocean has limited the role of ag(l) in assessing more specific biogeochemical 
cycling of CDOM, including source, relative composition (e.g. low or high molecular 
weight material) and degradation state, all of which provide insight into ecosystem 
functioning and carbon cycling (Helms et al. 2013; Helms et al. 2008; Wünsch et al. 2018). 
Where ag(l) may not vary significantly, Sg, fluorescence metrics and molecular 
characterization of CDOM and DOM often display significant spatial variability, 
suggesting a strong role for more nuanced optical characterizations of CDOM using 
absorption and fluorescence features (Kaiser and Benner 2009; Medeiros et al. 2015; 
Mentges et al. 2017; Nelson and Gauglitz 2016; Zhao et al. 2017). Recent work specifically 
considering marine-produced CDOM is also beginning to address causes for spectral 
variability across different wavelength ranges with trends linked to environmental 
variability including phytoplankton bloom state and nutrient stoichiometry (Asmala et al. 
2018; Danhiez et al. 2017). These findings agree well with past studies that have found 
CDOM to peak approximately 1 month after the peak phytoplankton bloom, suggesting a 
role for phytoplankton degradation and microbial and zooplankton CDOM production at 
particular stages of a phytoplankton bloom (Kinsey et al. 2018; Organelli et al. 2014; 
Ortega-Retuerta et al. 2009; Rochelle-Newall and Fisher 2002; Romera-Castillo et al. 
2011). This work is necessary to elucidate the cause of non-covarying differences in Sg 
estimated for different spectral ranges that can significantly impact our ability to accurately 
relate ag(l) and Sg to biogeochemical variability under different environmental conditions. 

The bulk of CDOM composition variability directly related to optical variability in 
Sg has been linked to spectral ranges either entirely or partially unavailable from the 
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proposed spectral capability of PACE (e.g. S275:295). Some empirical or multivariate 
statistical techniques have been proposed to retrieve these parameters, as well as semi-
analytical frameworks contingent on an empirical relationship to define Sg of 
biogeochemical interest (Cao and Miller 2015; Fichot et al. 2013; Mannino et al. 2014; 
Matsuoka et al. 2013); however, spectral variability at visible wavelengths is often 
disconnected from variability at wavelengths <400 nm due to very different sets of 
chromophores impacting each spectral range (Asmala et al. 2018; Danhiez et al. 2017). 
This suggests that relationships indirectly estimating S275:295 will have limited efficacy 
unless environmental conditions are well-defined. From this, we suggest a renewed focus 
on relating spectral variability from directly viewable wavelengths (e.g. 350-400 nm) to 
CDOM composition. A common issue when decomposing at-w spectra dominated by adg(l) 
was overestimation of aph(l) from 350-400 nm. While some of this error comes from the 
algorithm scheme, it should also be noted that S350:400 tends to be higher across much of 
the spectra considered here. Spectral variability in this wavelength range is relatively high 
(Helms et al. 2008) and displays unique variability in the global ocean (Grunert et al. 2018). 
It is likely that better characterizing variability in this portion of the spectrum will improve 
estimation of both adg(l) and aph(l), as well as providing a metric carrying information 
about unique biogeochemical processes. Variability at wavelengths < 300 nm is largely 
attributed to terrestrial material and its degradation, while 300-400 nm wavelengths are 
subject to variability from both terrestrial and marine-sourced material (Danhiez et al. 
2017; Helms et al. 2008). This suggests that Sg at wavelengths available from PACE can 
provide information on microbial carbon cycling. We show here that relatively accurate 
retrievals of Sdg are possible from hyperspectral absorption data, free of explicit 
assumptions, and are theoretically possible from satellite-retrieved Rrs(l). As we move 
forward, hyperspectral ocean color remote sensing will benefit from a common set of Sg 
metrics that relate to specific biogeochemical processes. 

3.4.3 Phytoplankton 

 Phytoplankton community composition, grouped into functional types including 
taxonomic class, cell size, and particle size distribution have been successfully retrieved 
using multispectral satellite imagery with a variety of approaches (Mouw et al. 2017 and 
references therein). While proof of concept has been demonstrated for phytoplankton 
functional types, validation metrics vary (Mouw et al. 2017) and there are inconsistencies 
in magnitude, temporal and spatial variability between existing retrievals (Kostadinov et 
al. 2017).  Greater spectral information with forthcoming missions is anticipated to 
improve and expand phytoplankton functional type retrievals (Isada et al. 2015; Mouw et 
al. 2017; Wolanin et al. 2016). Hyperspectral satellite imagery provides new avenues for 
identifying phytoplankton community composition and physiology through use of 
identified pigments (Bracher et al. 2017; Uitz et al. 2015), allowing for more accurate 
estimates of primary productivity, light and nutrient limitation and phytoplankton carbon 
content (Behrenfeld et al. 2015; Graff et al. 2016; Robinson et al. 2017; Roy et al. 2017; 
Westberry et al. 2008). Historically, Chl has been the primary variable of interest from 
satellite sensors, dating back to the Coastal Zone and Color Scanner (CZCS) proof-of-
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concept mission. This is largely due to the ability to constrain ecosystem productivity from 
Chl (e.g. Behrenfeld and Falkowski 1997). Interest in the global carbon cycle, however, 
has increased interest in variables beyond Chl as phytoplankton carbon does not directly 
covary with Chl but is rather dependent on environmental and physiological factors 
(Behrenfeld et al. 2015; Burt et al. 2018; Roy et al. 2017). Additionally, the introduction 
of more accurate net production estimates are possible using IOP retrievals (Robinson et 
al. 2017; Silsbe et al. 2016). 

 As with Chl algorithms, accurately retrieving IOP’s in productive and complex 
waters is quite difficult and a significant motivator for launching hyperspectral capabilities 
on a satellite platform (Bricaud et al. 2012; Mouw et al. 2015; Odermatt et al. 2012). 
Significant work in Gaussian decomposition of hyperspectral ap(l) and aph(l) has been 
shown to yield good closure between modeled and measured ap(l)/aph(l) while also 
providing strong relationships between some phytoplankton pigments and fitted Gaussian 
parameters (Chase et al. 2013; Chase et al. 2017; Wang et al. 2016; Wang et al. 2017). 
Identifying phytoplankton pigments in a complex signal typically relies on derivative 
analysis provided noisy data can be adequately smoothed (Tsai and Philpot 1998; Lee et 
al. 2007). While previous methods focusing on hyperspectral capabilities have assumed an 
Sd/dg value, we show the potential to retrieve Sdg, aph(l) and adg(l) with a high level of 
accuracy across a range of optical conditions. Accurately retrieving spectral shape of both 
aph(l) and adg(l) is critical for accurately estimating both parameters, while unbiased 
retrieval allows for utilizing both parameters to estimate biogeochemical variables free of 
an assumption of covariance that is often inaccurate for optically complex waters (e.g. 
Babin et al. 2003). 

 We considered the locations of fitted Gaussian components for observed aph(l) and 
parameters used to estimate aph(l) components within the algorithm; after removing adg(l), 
Gaussian component location was remarkably consistent with components fitted on 
observed aph(l) through the same methodology, albeit with fewer fitted peaks overall (Fig. 
8). This is likely due to pigments centered at wavelengths < 400 nm, where initial estimates 
of aph(l) were typically smoother than observed, but final estimates more often captured 
spectral features. We did not utilize Gaussian decomposition to estimate the final aph(l) 
output, as we found that a smoothed residual more accurately represented observed aph(l) 
than aph(l) modeled from the Gaussian components.  This could be due to fitting fewer 
Gaussian components than needed to accurately model aph(l) or constraints based on poor 
initial Gaussian curve parameters; our methodology did fit fewer peaks than alternate 
Gaussian decomposition schemes due to a difference in methodologies (Hoeppfner and 
Sathyendranath 1993; Chase et al. 2013). These algorithms typically identify pigments 
from first and second derivative analysis of an existing database of phytoplankton spectra 
then assign windows around these points (typically 12 peaks). Our approach focuses on 
identifying primary pigment features to best fit observed at-w(l) without assuming the 
locations of pigments, resulting in fewer identified peaks (~6 peaks). There is potential to 
increase the sensitivity of the peak finding step and to not filter out identified peaks that 
are small. Our focus was on retrieving adg(l) and aph(l) accurately, including spectral 
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shape, rather than individually parameterizing phytoplankton pigments. It is possible to 
utilize the aph(l) output in a separate Gaussian decomposition scheme, or other approach 
that identifies phytoplankton pigments. However, it should be noted that derivative analysis 
of the final aph(l) output, even after smoothing, resulted in more identified peaks than the 
observed aph(l) using our scheme. This is very likely due to the inclusion of chromophores 
in ag(l) and ad(l) that result in deviations from the typical exponential expression used to 
model these parameters, features visibly apparent in many of the adg(l) spectra. While often 
overlooked, these features have been recognized for some time (Babin et al. 2003; Schwarz 
et al. 2002) and a recent methodology for fitting these features provides a means of both 
quantifying them and more accurately modeling the underlying exponential signal (Catalá 
et al. 2016; Massicotte and Markager 2016; Grunert et al. 2018). This approach is useful 
for in situ data, but not practical for our proposed methodology and likely a non-factor 
when considering at-w(l) derived from satellite Rrs(l). 

3.4.4 NAP 

Of the IOP’s we focus on here, understanding spectral variability in ad(l) is perhaps 
the most ambiguous. NAP absorption typically follows an exponential increase with 
decreasing wavelength, similar to ag(l), but within a much narrower range of spectral slope 
values across diverse environments (Babin et al. 2003; Neukermans et al. 2016). Sd has 
been hypothesized to vary with minerogenic and organic content, with some studies 
showing differences in mean Sd supporting this theory (Babin and Stramski 2004; Babin et 
al. 2003; Estapa et al. 2012). Additionally, recent work has shown differences in Sd across 
ad(l) dominated by organic matter of different origin or degradation state, e.g. NAP 
affiliated with a phytoplankton bloom (Neukermans et al. 2016). Beyond broad spectral 
shape, ad(l) spectra often display deviations from an exponential model. These features are 
sometimes associated with phytoplankton pigments remaining after the bleaching process 
but are often spectrally consistent with iron compounds (e.g. organic-complexed iron, iron 
oxides; Babin et al. 2003; Babin and Stramski 2004; Estapa et al. 2012). Recent approaches 
have also displayed optically consistent features between CDOM and base-extracted 
particulate organic matter (BEPOM), effectively CDOM extracted from phytoplankton and 
NAP (Brym et al. 2014; Osburn et al. 2015). CDOM and BEPOM collected from the same 
environment shows remarkable consistency in both absorption spectra and fluorescence 
features, suggesting that deviations from the exponential in ad(l) are affiliated with unique 
chromophores or groups of chromophores also present in ag(l). As with ag(l), these 
deviations can be modeled through a Gaussian decomposition scheme following the 
approach of Massicotte and Markager (2016). However, an understanding of what these 
features are is even more limited than for ag(l). 

 Separating ad(l) from adg(l) relies on empirical relationships (Dong et al. 2013). 
With current multispectral limitations and algorithm capabilities, this will likely remain a 
limitation. However, work linking scattering and absorption properties of particulate 
material with its composition (minerogenic vs. organic), size and refractive index has 
shown promising capability to further constrain ad(l) and aph(l) with hyperspectral 



90 

measurements by considering relationships between bbp(l)/ap(l) (Neukermans et al. 
2016). Consideration of lidar and independent bbp(l) measurements provides a powerful 
means of characterizing particulate material including its refractive index (Behrenfeld et 
al. 2013; Boss et al. 2004; Reynolds et al. 2016; Zhang et al. 2014), with Sd appearing to 
show some relationship between minerogenic and organic content, even organic content 
presumably of variable degradation state (Babin et al. 2003; Estapa et al. 2012; 
Neukermans et al. 2016). Relationships between bbp(l) and ap(l) have also indicated 
various bloom stages, suggesting a further ability to constrain IOPs by considering 
independent measurements and relationships between IOPs (Neukermans et al. 2014). 
Currently, a robust relationship between particle size, composition and refractive index, 
as characterized with bbp(l) and the slope of the bbp(l) spectra, and Sd is not evident from 
the literature. This, and other possible means of differentiating Sd and Sg free of the 
restrictions of an empirical relationship, are crucial for advancing our understanding of 
ocean biogeochemistry as afforded through accurate retrievals of Sg. This work would 
also likely lend insight into the biogeochemical significance of Sd. 

3.5 Conclusions 

We show that across most water types considered, DAISEA can accurately estimate 
adg(l), Sdg and aph(l) magnitude and spectral features for all water types where aph(l) 
contributes at moderate (>10%) levels at 440 nm. We parameterized the percent of adg(l) 
and aph(l) estimates that were retrievable by comparing the error in one metric to the 
observed signal of the other. Consistent with the general accuracy of DAISEA, primary 
features (i.e. chlorophyll-a absorption peaks) of aph(l) were retrievable for greater than 
80% of spectra across environments where aph(440) > 10%; adg(l) was retrievable for at 
least 80% of spectra from 350-650 nm when aph(440) < 70%. NRMSE metrics suggest 
strong algorithm performance across most optical variability from 350-650 nm. Algorithm 
bias shows a tendency to overestimate aph(l) when aph(440) < 40% and to underestimate 
aph(l) when aph(440) > 60%. 

Despite schemes for separation of adg(l) and Sdg into the component parts (NAP and 
CDOM; e.g. Dong et al. 2013), we did not pursue separation here. Currently, coincident 
hyperspectral measurements of Rrs(l), bbp(l), aph(l), ad(l) and ag(l) down to a minimum 
wavelength of 350 nm, the proposed lower wavelength limit of PACE, are quite 
uncommon relative to coincident measurements at wavelengths ≥ 400 nm. We anticipate 
that hyperspectral inversion methods and coincident lidar measurements will enable a 
detailed analysis of particulate absorption that will lend insights into ad(l) magnitude and 
NAP particle composition, with further insight into Sd. It is very likely that this will be a 
more robust means of individually characterizing Sg and Sd and should be the focus of 
future research efforts. Considering current algorithm performance, we anticipate that a 
well-performing scheme to separate Sdg into its component parts will allow for 
appropriate resolution in Sg to estimate source and degradation state of CDOM in the 
surface ocean. 
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