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Optical classification of an urbanized estuary
using hyperspectral remote sensing reflectance

KYLE J. TURNER,1 MARIA TZORTZIOU,1,* BRICE K. GRUNERT,2

JOAQUIM GOES,3 AND JONATHAN SHERMAN1

1The City College of New York, CUNY, New York, NY 10031, USA
2Cleveland State University, Cleveland, OH 44115, USA
3Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
*mtzortziou@ccny.cuny.edu

Abstract: Optical water classification based on remote sensing reflectance (Rrs(λ)) data can
provide insight into water components driving optical variability and inform the development
and application of bio-optical algorithms in complex aquatic systems. In this study, we use an in
situ dataset consisting of hyperspectral Rrs(λ) and other biogeochemical and optical parameters
collected over nearly five years across a heavily urbanized estuary, the Long Island Sound
(LIS), east of New York City, USA, to optically classify LIS waters based on Rrs(λ) spectral
shape. We investigate the similarities and differences of discrete groupings (k-means clustering)
and continuous spectral indexing using the Apparent Visible Wavelength (AVW) in relation to
system biogeochemistry and water properties. Our Rrs(λ) dataset in LIS was best described by
three spectral clusters, the first two accounting for the majority (89%) of Rrs(λ) observations
and primarily driven by phytoplankton dynamics, with the third confined to measurements in
river and river plume waters. We found AVW effective at tracking subtle changes in Rrs(λ)
spectral shape and fine-scale water quality features along river-to-ocean gradients. The recently
developed Quality Water Index Polynomial (QWIP) was applied to evaluate three different
atmospheric correction approaches for satellite-derived Rrs(λ) from the Sentinel-3 Ocean and
Land Colour Instrument (OLCI) sensor in LIS, finding Polymer to be the preferred approach. Our
results suggest that integrative, continuous indices such as AVW can be effective indicators to
assess nearshore biogeochemical variability and evaluate the quality of both in situ and satellite
bio-optical datasets, as needed for improved ecosystem and water resource management in LIS
and similar regions.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Coastal and estuarine waters are highly productive and dynamic ecosystems and play a critical
role in biogeochemical fluxes between the land, ocean, and atmosphere. Effective monitoring
of coastal ocean regions is essential to assess spatiotemporal changes in water quality (e.g.,
eutrophication, hypoxia), identify harmful algal blooms (HABs), and understand the local-to-
global scale effects of climate change and other anthropogenic pressures (e.g., urbanization,
pollution, sea level rise). Satellite remote sensing of ocean color provides a particularly useful
tool for recurrent, synoptic observation of coastal ocean dynamics which is not achievable with
in situ point sampling alone. Yet, accurate estimation and interpretation of ocean color products
in coastal waters remains challenging due to significant bio-optical complexity arising from
unique physical and biogeochemical processes and interactions across land-water interfaces
(e.g., river inputs, adjacency effects, meteorological phenomena such as sea breezes), tidal
variability, shallow water influences (e.g., bottom reflectance, sediment re-suspension), and urban
air pollution [1–3]. Thus, there is an ongoing need to better characterize the optical variability
and underlying drivers and processes impacting the ocean color signal across diverse coastal,
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estuarine, and nearshore environments, particularly in regions heavily influenced by human
activity.

The spectral remote sensing reflectance (Rrs(λ); λ denotes wavelength of light) is the funda-
mental radiometric variable used to quantify ocean color [4]. The shape and amplitude of Rrs(λ)
over the ultraviolet (UV), visible (Vis) and near-infrared (NIR) portions of the electromagnetic
spectrum vary according to the concentration, composition, and size of optically active in-water
components, including phytoplankton, non-algal particles (NAP), and colored dissolved organic
matter (CDOM). The distinct contributions of these components to the total spectral absorption
(a(λ)) and backscattering (bb(λ)) of light constitute the inherent optical properties (IOPs) of the
water. A variety of empirical and semi-analytical approaches, including band-ratio [5], non-linear
optimization [6], multiple linear regression [7,8], and neural network models [9], have been
developed to derive IOPs and other geophysical parameters (e.g., chlorophyll-a concentration
(Chl-a) or CDOM absorption) from satellite-derived Rrs(λ) data. Other studies have focused on
using Rrs(λ) data to classify discrete optical water types (OWTs), waters with similar optical and
biogeochemical properties, based on Rrs(λ) spectral shape and/or magnitude [10–18]. OWTs
have been defined globally and regionally using various statistical clustering methods (e.g.,
k-means) applied to multi- and hyperspectral Rrs(λ) from both in situ and satellite datasets. Useful
applications of OWT frameworks have included the tuning and blending of bio-optical algorithms
to improve retrievals and uncertainty assessment in coastal and inland waters [15,16,19], the
delineation of episodic and spatially dynamic phenomena (e.g., river plumes, algal blooms)
[17,20,21], and quality assurance of Rrs(λ) datasets [22].

Vandermeulen et al. [23] introduced a novel metric, the Apparent Visible Wavelength (AVW),
to quantitatively describe Rrs(λ) spectral shape along a continuum of wavelength values, akin
to other methods which relate measured Rrs(λ) to the “true” color as perceived by the human
eye [24–30]. Calculated as the weighted harmonic mean of Rrs(λ) wavelengths, AVW provides
a gradational, one-dimensional index that can be applied to in situ or satellite-derived Rrs(λ)
datasets of varying spectral resolution. As opposed to generating discrete classes, the continuous
output of AVW enables the analysis of more gradual or subtle spatiotemporal shifts and trends
in ocean color and associated variables. The AVW technique is also advantageous in that it is
relatively simple and intuitive, computationally cost-effective, requires no a priori knowledge
or training for application/interpretation, and produces consistent, comparable results across
datasets. Dierssen at el. [31] extended the use of AVW to develop a quality control method for
hyper- and multispectral Rrs(λ) data using a robust polynomial relationship between AVW and
a Normalized Difference Index (NDI) of blue-green and red wavelengths derived from a large
global in situ hyperspectral Rrs(λ) dataset. The Quality Water Index Polynomial (QWIP) score,
representing the difference between a measured spectrum’s AVW and NDI and the predicted
NDI based on the polynomial, can be an effective tool for evaluating spectral data quality of large
field or satellite datasets, optimizing radiometric data processing routines, or as shown for the
first time in this study, assessing the performance of atmospheric correction (AC) approaches.

The Long Island Sound (LIS), east of New York City, USA, is one of the most highly
populated, heavily urbanized estuaries in the world. Although previous studies have focused on
characterizing bio-optical properties in specific regions across LIS [32–36], relatively few studies
have explored the bio-optical complexity and Rrs(λ) variability over the full spatial extent of LIS.
Using detailed measurements of Rrs(λ), IOPs, Chl-a, total suspended matter (TSM), and particle
size across major subregions of the Sound, Aurin et al. [32] found a high degree of seasonal
variability in Rrs(λ). They identified two predominant Rrs(λ) “types” based on spectral shape: (1)
“algal-driven” spectra, typical in the western LIS and during summer months, with highly peaked
green reflectance and low reflectance in the blue due to a combination of strong phytoplankton,
CDOM, and non-algal particle absorption, and (2) “sediment-driven” spectra in the central and
eastern LIS with broadened reflectance peaks due to relatively weaker phytoplankton absorption
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and enhanced suspended sediment backscattering. Hyperspectral above-water radiometric
measurements made at the Long Island Sound Coastal Observatory (LISCO) platform [37] in the
southwestern LIS over the period 2011-2014 display similar seasonal changes in Rrs(λ) spectral
shape, with more peaked average reflectance during summer months (i.e., August, September)
and broader blue-green reflectance during late fall/early winter (i.e., November to January) [38].

Here, we build on this previous work by extending measurements to nearshore LIS waters
– where some of the strongest gradients in the amount and quality of biogeochemical inputs
typically occur – using a spatiotemporally rich in situ dataset of hyperspectral Rrs(λ) and surface
biogeochemistry collected across the LIS and major tributaries. The dataset captures the optical
and biogeochemical complexity of this dynamic system over a period of almost five years
(2017-2022) across different seasons, environmental conditions, and extreme events. We use both
statistical clustering and AVW to classify LIS waters based on Rrs(λ) spectral shape and relate
to IOPs and biogeochemistry to understand how these methods perform and compare in this
complex, urbanized estuarine system. We further explore the utility of spectral classification for
evaluating different AC approaches to retrieve satellite Rrs(λ) in urban-influenced coastal waters
and relate how this knowledge can improve our understanding of estuarine biogeochemistry,
water quality, and ecology using satellite-observed ocean color data.

2. Data and methods

2.1. In situ measurements

An in situ dataset consisting of hyperspectral Rrs(λ) and biogeochemical and physical measure-
ments made across LIS from September 2017 to March 2022 was used in this study. Measurements
in the mainstem of LIS were made largely in collaboration with the Connecticut Department
of Energy and Environmental Protection (CTDEEP) on monthly to bi-monthly Water Quality
and Hypoxia surveys aboard the R/V John Dempsey (https://portal.ct.gov/DEEP/Water/LIS-
Monitoring/LIS-Water-Quality-and-Hypoxia-Monitoring-Program-Overview) (Fig. 1). Addi-
tional targeted sampling trips were made using chartered small fishing vessels to increase the
density of sampling in LIS mainstem and collect measurements in nearshore waters, including
along strong salinity gradients in the Housatonic and Connecticut Rivers – two of the primary
freshwater inputs to LIS accounting for more than 40% of total nitrogen loads [39]. Together,
the data represent all months of the year. The following sections describe in further detail the
parameters used in this study and the methods for data collection and processing. Table 1 provides
a summary of this information.

Table 1. Summary of in situ data in LIS (September 2017- March 2022). N denotes the number of
observations where the number in parentheses is the number with coincident in situ Rrs(λ).

Parameter Units/Resolution Method/Instrument N

Remote sensing reflectance (Rrs(λ)) sr−1; 1 nm
from 400-800

nm

Spectra Vista Corporation
HR512-i; 3C model [47]

215

Colored dissolved organic matter
absorption (aCDOM(λ))

m−1; 1 nm
from 240-750

nm

Agilent Cary 300 UV-Vis
dual-beam spectrophotometer [51]

583 (213)

Dissolved organic carbon
concentration (DOC)

mg L−1 Shimadzu TOC-L analyzer 392 (131)

Chlorophyll-a concentration (Chl-a) mg m−3 Turner Trilogy fluorometer [52] 497 (157)

Salinity unitless EXO2 water quality sonde 270 (105)

Dissolved organic matter
fluorescence (FDOM)

QSU EXO2 water quality sonde 270 (105)

Turbidity FNU EXO2 water quality sonde 270 (105)

https://portal.ct.gov/DEEP/Water/LIS-Monitoring/LIS-Water-Quality-and-Hypoxia-Monitoring-Program-Overview
https://portal.ct.gov/DEEP/Water/LIS-Monitoring/LIS-Water-Quality-and-Hypoxia-Monitoring-Program-Overview
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Fig. 1. Locations of in situ measurements in Long Island Sound (2017-2022). Orange
squares indicate stations with concurrent biogeochemical (BGC) and hyperspectral above-
water radiometric observations. Black circles indicate stations with only BGC measurements.
Indigo triangles indicate sampling sites visited year-round by the Connecticut Department
of Energy and Environmental Protection (CTDEEP).

2.1.1. Above-water radiometry and calculation of Rrs(λ)

Above-water radiometric measurements were made using a Spectra Vista Corporation HR512i
handheld hyperspectral spectroradiometer (SVC), which observes at a spectral range of 350-1050
nm (resolution ≤1.5 nm) and a 4° field-of-view. Sampling days were chosen to target ideal
conditions (clear or fully overcast skies) but data were also collected under variable cloud cover
when conditions were not limited by precipitation. A total of 215 stations in LIS included
radiometric observations with the SVC. To ultimately derive Rrs(λ), defined as the ratio of the
water-leaving radiance (Lw(λ)) to the total downwelling plane irradiance (Ed(λ))

Rrs(λ) =
Lw(λ)

Ed(λ)
, (1)

consecutive scans of the water surface, sky, and a calibrated Lambertian reference plaque (5 scans
each) were taken at each station. Scans were conducted using a consistent viewing geometry
following IOCCG protocols [40], with a sensor viewing angle (θ) of 40° from nadir and zenith
for water and sky, respectively, and a sun relative azimuth angle (ϕ) of 90°-135°. Care was taken
to avoid any foam, bubbles, or floating debris on the water surface and any disturbance (i.e.,
shading or reflection) from the ship or small boat structure. The upwelling radiance from the
water surface (Lu(λ)) measured directly by the above-water sensor is a combination of Lw(λ) and
the water surface-reflected radiance (Lr(λ)) such that Eq. (1) can be re-written as

Rrs(λ) =
Lu(λ) − Lr(λ)

Ed(λ)
. (2)

The most commonly used above-water radiometric approach of Mobley [41] considers Lr(λ) as
the spectrally constant fraction, ρ, of sky radiance (Ls(λ)) measured in the specular direction of
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Lu(λ), such that

Rrs(λ) =
Lu(λ) − ρLs(λ)

Ed(λ)
, (3)

with different values for ρ provided by Mobley [41] for a range of wind speeds (a proxy for
surface roughness) and viewing geometries. However, several studies [42–46] have shown that
ρLs(λ) does not always fully represent Lr(λ), especially when the sky radiance distribution is
non-uniform, and highlight the importance of considering the spectral dependency of ρ to more
effectively remove sun and sky glint signals and accurately estimate Lw(λ). Taking this into
account, Rrs(λ) was computed using the 3C model of Groetsch et al. [47] which derives a
spectrally resolved offset applied to Eq. (3) by means of a full-spectrum inversion that incorporates
the analytical irradiance model of Gregg and Carder [48] and the bio-optical model of Albert
and Mobley [49], developed for optically complex waters. The 3C processing was applied
using the publicly available Python code package (https://gitlab.com/pgroetsch/rrs_model_3C).
Observed IOP values were considered for select stations to further constrain initial conditions
within the 3C model, with minimal impact on output spectra; thus, for simplicity, the default
initial parameterization was used. Prior to processing, outlier Ed(λ), Ls(λ), or Lu(λ) spectra
were filtered using the MATLAB function isoutlier.m, where any spectra with >25 wavelengths
exceeding three scaled median absolute deviations from the median between 400 and 600 nm
were excluded. For input to 3C, the mean Ed(λ) and Ls(λ) spectra were used and Rrs(λ) was
calculated for each individual Lu(λ) scan. The spectral average Rrs(λ) was used as the final
estimate of Rrs(λ) for each station. The full workflow for this processing is available online
(https://github.com/tzortziou-lab), including example code, custom MATLAB functions and the
original 3C approach [50]. Output spectra were individually assessed for data quality. Spectra
with particularly elevated or negative UV/NIR reflectance, a high level of noise, or highly irregular
spectral shapes were excluded from the analysis.

2.1.2. CDOM absorption and spectral slope

Discrete water samples were collected within one meter of the water surface using a Niskin
bottle attached to a CTD-rosette when sampling on CTDEEP surveys or by hand when sampling
via small boat into 4 L Nalgene collection bottles that were triple rinsed with sample prior to
collection. All samples were filtered on the research vessel (CTDEEP) or in the laboratory on
the day of collection, first through 47 mm diameter 0.7 µm pore size GF/F glass fiber filters,
then through 0.22 µm pore size polycarbonate membrane filters into pre-rinsed and combusted
(450° C for six hours) borosilicate amber bottles and stored in the dark at 4° C until processing
(typically within 2 days, all within 1 week). Once samples were equilibrated to room temperature,
the spectral absorption of CDOM (aCDOM(λ)) from 240-750 nm (1 nm resolution) was measured
in triplicate using an Agilent Cary 300 UV-Vis dual-beam benchtop spectrophotometer with 5
cm optical pathlength quartz cuvettes following the procedure detailed in Tzortziou et al. [53].
The spectral slope of aCDOM(λ) over the wavelength range 275-295 nm (S275:295) was estimated
for all samples as an indicator of CDOM source, molecular weight and degradation [54]. For
comparison with previous studies in LIS, we also calculated the spectral slope from 412-650 nm
(S412:650) [32].

2.1.3. Dissolved organic carbon (DOC) concentration

To determine DOC concentration, the 0.22 µm sample filtrate (filtration procedure described in
Section 2.1.2) was collected in duplicate into pre-rinsed and combusted (450° C for six hours)
borosilicate amber vials (30 or 40 mL) and acidified with a small amount of dilute (10% v/v)
hydrochloric acid for preservation (final pH between 2 and 3). Samples were stored in the dark at
4° C and shipped to the Analytical Core Lab at the University of Wisconsin - Milwaukee School

https://gitlab.com/pgroetsch/rrs_model_3C
https://github.com/tzortziou-lab
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of Freshwater Sciences for analysis (https://uwm.edu/freshwater/research/centers/analytical-core-
lab/). Duplicate values were averaged to obtain final concentrations. If one value was >50%
larger than the other, the sample was excluded from the analysis.

2.1.4. Chl-a concentration

For analysis of Chl-a concentration, water samples (collection procedure described in Section
2.1.2) were filtered in duplicate under gentle vacuum onto 25 mm diameter 0.7 µm pore size
GF/F filters and immediately frozen (either in liquid nitrogen or −20° C chest freezer). The
volumes filtered ranged from 50-200 mL, depending on the amount required to achieve a slight
but noticeable coloration to the filter. Chl-a concentrations were determined fluorometrically
[52] using a Turner Trilogy benchtop fluorometer. Duplicate values were averaged to obtain final
concentrations. If one value was >50% larger than the other, the sample was excluded from the
analysis.

2.1.5. Salinity, turbidity, and FDOM

Water salinity, turbidity, and dissolved organic matter fluorescence (FDOM) measurements were
obtained using an EXO2 multiparameter water quality sonde. All sonde sensors were calibrated in
the laboratory prior to each cruise using the recommended standards and protocols, as described
in Menendez et al. [55]. The instrument was deployed to record data continuously (every two
seconds) and manually profiled through the water column up to a depth of 10 m. Data were
subsequently binned into 0.5 m depth increments and averaged. Here, we only consider the
near-surface measurements (0.5 m) for comparison with Rrs(λ) and other discretely sampled
water parameters.

2.2. Classification of Rrs(λ) spectral shape

2.2.1. Apparent visible wavelength (AVW)

To characterize the spectral shape of the hyperspectral Rrs(λ) we applied the Apparent Visible
Wavelength (AVW) approach of Vandermeulen et al. [23]. AVW provides a simple, one-
dimensional metric of ocean color along a continuum of wavelength values that can be applied
to hyperspectral or multispectral radiometric data from in situ or satellite-based sensors. The
AVW is defined as the weighted harmonic mean of Rrs(λ) wavelengths constrained by the relative
magnitude of reflectance at each wavelength and is expressed in units of nanometers following

AVW =
∑︁λn

i=λ1
Rrs(λi)∑︁λn

i=λ1

Rrs(λi)
λi

=

(︄∑︁λn
i=λ1
λ−1

i Rrs(λi)∑︁λn
i=λ1

Rrs(λi)

)︄−1

. (4)

AVW has been shown to be a highly effective index of spectral shape and has the advantage of
being a continuous, quantitative descriptor that utilizes the full range of spectral information and
can track gradational variations and trends in ocean color over space and time. In this study, AVW
was calculated over the wavelength range 400-800 nm to minimize the impacts of noise/artifacts
in the UV and NIR ends of the spectrum.

2.2.2. k -means clustering

As an alternative method for analyzing Rrs(λ) spectral shape, we applied the more traditional
k-means clustering algorithm [56] to partition spectra into a discrete number of statistically
similar groups. This method, along with the related fuzzy c-means clustering, have been applied
extensively to Rrs(λ) datasets from diverse aquatic environments to define OWTs based on both
spectral shape and magnitude [12,13,16–18,22,57]. As we were primarily interested in comparing
to definitive clusters, and the clustering results were similar between the two approaches, we

https://uwm.edu/freshwater/research/centers/analytical-core-lab/
https://uwm.edu/freshwater/research/centers/analytical-core-lab/
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opted to use k-means over fuzzy c-means for this study. To focus the clustering on spectral shape
features rather than first order magnitude differences, each Rrs(λ) spectrum was first normalized
by the integral [10,11,23,58] from 400-800 nm following

nRrs(λ) =
Rrs(λ)

∫800
400 Rrs(λ)dλ

, (5)

where nRrs(λ) refers to the normalized reflectance spectrum. The integration was performed
using the trapezoidal method (MATLAB function trapz.m). To determine the optimal number of
clusters (k), we used two established cluster validation procedures: the Silhouette test [59] and
the Davies-Bouldin index [60]. The tests were evaluated over a range of 2-10 clusters, with the
results of both indicating k= 3 as the optimal k for our dataset. The k-means algorithm was then
applied to the nRrs(λ) data using the MATLAB function kmeans.m with 20 replicates and the
default Squared Euclidean distance metric to compute the cluster centroids.

2.3. Satellite data and matchups

To explore the application of AVW and the QWIP technique [31] for assessing spectral data quality
and the performance of different AC algorithms in LIS, data from the Ocean and Land Colour
Instrument (OLCI) on the European Space Agency’s (ESA’s) Sentinel-3A and Sentinel-3B
satellites were acquired from NASA’s OceanColor Web (https://oceancolor.gsfc.nasa.gov/).
Level-1B, full resolution (EFR) Top of Atmosphere (TOA) upwelling radiances covering the
time-frame of our in situ measurements (2017-2021) were processed to Rrs(λ) using three
commonly applied AC methods: the standard NASA SeaDAS algorithm (L2gen), ACOLITE [61],
and Polymer [62]. Standard quality control flags, including land and cloud flags, were applied for
each AC approach, and flagged pixels were set to NaN. The satellite data were matched with the
in situ hyperspectral Rrs(λ) using the mean of a 3× 3 pixel box centered on the sampling location
within a± 3-hour temporal window. Only matchups with at least 5 valid (non-NaN) pixels and a
coefficient of variation (CV) between pixels of <0.15 for the 443 nm, 560 nm, and 665 nm bands
were retained for analysis [63,64]. If a matchup meeting these criteria was available from both
Sentinel-3A and Sentinel-3B, the average value was used.

2.4. Quality water index polymonial (QWIP) application

Based on a robust global relationship between AVW and a Normalized Difference Index (NDI) of
blue-green and red wavelengths, the QWIP method has been recently introduced as a simple metric
to assess the spectral quality of in situ or satellite-derived Rrs(λ) [31]. To understand how this
global relationship holds in the urban estuarine waters of LIS, we applied the QWIP to the in situ
hyperspectral Rrs(λ) measurements. We then applied the same relationship to the OLCI-derived
multispectral Rrs(λ) from the three AC algorithms described in Section 2.3, to assess the use of
the QWIP for evaluating AC performance in coastal and nearshore systems. Following Dierssen
et al. [31], AVW was calculated using Eq. (4) over the visible range (400-700 nm), as opposed to
400-800 nm, for coherence between the in situ and satellite data. For the OLCI AVW calculation,
we applied sensor-specific offset coefficients to convert to hyperspectral-equivalent values, as
described in Vandermeulen at al. [23], with updated coefficients provided in Vandermeulen [65].
The NDI at blue-green and red bands was calculated following

NDI =
(Rrs(λ2) − Rrs(λ1))

(Rrs(λ2) + Rrs(λ1))
, (6)

where λ1 = 492 nm and λ2 = 665 nm for the hyperspectral Rrs(λ) and λ1 = 490 nm and λ2 = 665
nm for the OLCI Rrs(λ). The global QWIP relationship was calculated following

QWIP = p1AVW4 + p2AVW3 + p3AVW2 + p4AVW + p5, (7)

https://oceancolor.gsfc.nasa.gov/
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where AVW is the AVW calculated from 400-700 nm and p is the set of five coefficients provided
in Eq. (4) of Dierssen et al. [31]. The QWIP score was then determined as the difference between
the calculated NDI and the QWIP.

3. Results and discussion

3.1. Biogeochemical variability in LIS waters

Table 2 provides a basic statistical summary of select biogeochemical and optical parameters from
the full LIS dataset, collected over every season and including river/river plume observations.
Where available, matching parameters from the bio-optical characterization of Aurin et al. [32]
are included for comparison.

Table 2. General statistics of biogeochemical and optical parameters from the full LIS dataset
(2017-2022). N denotes the number of observations. Values for matching parameters from Table 3 in

Aurin et al. [32] are included for comparison.

Parameter
This study Aurin et al. [32]

N Median Range N Median Range

Chl-a [mg m−3] 497 4.42 0.55-79 121 7.1 0.7-80.6

DOC [mg L−1] 392 1.76 0.92-6.87 n/a n/a n/a

aCDOM(300) [m−1] 583 3.55 0.79-37.35 n/a n/a n/a

aCDOM(440) [m−1] 583 0.32 0.08-4.08 110 0.3 0.12-0.75

S275:295 [nm−1] 583 0.021 0.013-0.024 n/a n/a n/a

S412:650 [nm−1] 583 0.015 0.009-0.021 110 0.015 0.011-0.02

Turbidity [FNU] 74 2.08 0.22-8.33 n/a n/a n/a

The concentration of Chl-a in our dataset ranged from 0.55 mg m−3 to 79 mg m−3, very close
to the range reported by Aurin et al. [32], although with a slightly lower median value of 4.42
mg m−3. Concentrations of DOC were also highly variable, ranging from 0.92 mg L−1 to 6.87
mg L−1, with a median value of 1.76 mg L−1, which is similar to the average values reported
by Vlahos and Whitney [66] for multi-year, near-surface measurements by CTDEEP in the
mainstem of LIS. CDOM absorption, spectral slope, and turbidity measurements likewise covered
a very wide range of values, attesting to the contrasting water environments sampled, from
the marine-influenced eastern LIS to terrestrially and anthropogenically influenced freshwater
sources into the Sound. When comparing CDOM absorption at 440 nm (aCDOM(440)) and
spectral slope from 412 to 650 nm (S412:650) to those reported by Aurin et al. [32], the median
values are quite similar, however, a significantly larger range is observed in our dataset with
CDOM absorption reaching more than five times higher than previously reported [32], typically
associated with export of strongly absorbing, humic, high molecular weight and bioavailable
DOM from the Housatonic and Connecticut Rivers [67].

3.2. AVW and relationship with other variables

Driven by the variability in water biogeochemical and inherent optical properties, measured
hyperspectral Rrs(λ) in LIS exhibited high variability in spectral shape and amplitude, with
absolute reflectance values varying by over an order of magnitude (Fig. 2). The AVW calculated
from 400 to 800 nm ranged from 524 to 597 nm, with a median value of 554 nm. For comparison,
Stramski et al. [68] reported a median AVW of 460 nm for a global ocean dataset, while Valerio
et al. [12] reported AVW values from 543 to 612 nm for the Lower Amazon region. It is
important to note that AVW values shift depending on the wavelength range used. For example,
when calculated only over the visible range, AVW for the LIS dataset ranged from 520 to 577 nm,
with a median of 546 nm. The AVW values fell along a smooth gradient of spectral shape, as
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can be seen from the nRrs(λ) plot in Fig. 2. Generally, lower AVW spectra were associated with
elevated reflectance in the blue-to-green (400-550 nm) and lower reflectance in the orange-to-NIR
(600-800 nm) portions of the spectrum. Spectra with intermediate AVW values showed the most
pronounced green reflectance peaks, while the highest AVW spectra overall displayed relatively
lower reflectance in the green with more elevated reflectance in the orange-to-NIR.

Fig. 2. In situ hyperspectral remote sensing reflectance (Rrs(λ)) (top) and integral normalized
Rrs(λ) (bottom) colored by Apparent Visible Wavelength (AVW).

Regression of AVW and aCDOM(300) revealed a moderately strong positive correlation
(r= 0.63) between the two parameters over the full dataset (Fig. 3). This is not surprising,
given that aCDOM(λ) increases exponentially toward the blue-UV and is negligible in the red,
thus serving to reduce the Rrs(λ) signal significantly in the blue with less impact at longer
wavelengths (i.e., shifting the weighted mean to a higher value). However, a stark divergence
in the relationship between AVW and aCDOM(300) suggested change in underlying processes
driving the increase in AVW (i.e., change in spectral shape), which was further revealed by
incorporating the Chl-a observations (Fig. 3, right). In the most basic sense, two contrasting
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water “types” are shown to exhibit similar AVW values: (1) high CDOM, generally low Chl-a
waters where AVW is driven by CDOM and/or co-varying non-algal particles and (2) relatively
low CDOM, high Chl-a waters where phytoplankton have a greater impact on Rrs(λ) spectral
shape. When considering only points with Chl-a< 5 mg m−3, the correlation between AVW and
aCDOM(300) was greatly enhanced (r= 0.89), whereas for points with Chl-a> 5 mg m−3, only a
weak correlation (r= 0.26) remained (Fig. 3, right). A similar relationship was seen between
AVW and Chl-a, which showed a weak positive correlation over the whole dataset (r= 0.25),
but a much stronger positive correlation (r= 0.68) for points with Chl-a exceeding 5 mg m−3

(not shown). At these higher concentrations, increased phytoplankton absorption in the blue,
increased backscattering in the green, and more pronounced chlorophyll fluorescence peaks in
the red become dominant spectral shape features driving the increase in AVW.

Fig. 3. CDOM absorption spectra colored by AVW (left) and the relationship between
AVW and log10-transformed aCDOM(300) with points colored by Chl-a (right, color shown
on a log scale). Dashed lines indicate Type-II major axis linear regressions and r is the
Pearson correlation coefficient of each regression.

Turbidity and FDOM likewise showed positive trends with AVW (Fig. 4). In addition to
AVW being impacted by the amount of DOM, it was also strongly connected to the quality of
DOM, with AVW decreasing with increasing S275:295 (Fig. 4, right). Low salinity river and river
plume waters had the highest AVW values, were exceptionally high in FDOM, typically (but not
always) more turbid, and had significantly lower S275:295 than waters further into the mainstem of
LIS. FDOM and S275:295 are both highly correlated with the magnitude of CDOM absorption
at blue wavelengths, while higher turbidity is associated with increased suspended particulate
backscattering in the orange-to-NIR [69,70].

3.3. k-means clustering results

The k-means algorithm was applied to the nRrs(λ) spectra using k= 3 as the optimal number
of clusters, as described in Section 2.2.2. The number of clusters reported in previous studies
applying the k-means approach to normalized Rrs(λ) varies widely. For example, Xue et al. [57]
found four OWTs using a large dataset comprising multiple inland lakes in China, while Wei
et al. [22] produced 23 optical clusters based on an extensive global dataset covering a range
of marine environments. The resulting three optical clusters showed distinctive spectral shape
features, as illustrated by their spectral cluster centers (Fig. 5, left). Cluster 1 (N = 97) was
characterized by relatively broader and elevated blue-to-green reflectance, with lower reflectance
in the orange-to-NIR spectral range. Cluster 2 (N = 95) had “sharper” green reflectance (∼575
nm) and secondary red reflectance (∼685 nm) peaks, with lower blue-to-green reflectance and
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Fig. 4. Turbidity, FDOM, and S275:295 plotted against AVW with points colored by salinity.

higher orange-to-NIR reflectance compared with Cluster 1. Cluster 3 (N = 23) had the lowest
blue-to-green reflectance of the three clusters with significantly elevated reflectance in the
orange-to-NIR.

Fig. 5. Integral normalized Rrs(λ) spectra with the three k-means cluster centroids overlain
(left) and all spectra colored according to their assigned cluster (right).

Further description of the spectral shape and biogeochemical properties of the three nRrs(λ)
clusters is provided in Fig. 6 and Table 3. The three clusters were well separated along the
continuum of AVW values, highlighting the effectiveness of AVW as an index of spectral shape
(Fig. 6, top left). Cluster 1 had the lowest median AVW (542 nm), and likewise the highest
median blue-green/red (492/665 nm) reflectance ratio (2.40). Cluster 2 had a higher median
AVW (561 nm) and lower median blue-green/red reflectance ratio (1.40) than Cluster 1. Cluster
3 had the highest median AVW (582 nm) and the lowest median blue-green/red ratio (0.68) due
to the elevated red reflectance of this cluster.

All three clusters exhibited a large range of Chl-a; however, Cluster 2 was characterized by
the highest median Chl-a (9.58 mg m−3), more than twice that of Cluster 1 (4.03 mg m−3) and
three times that of Cluster 3 (2.80 mg m−3). In fact, Chl-a (phytoplankton) appears to be the
primary variable driving the shape differences between Cluster 1 and Cluster 2, as these two
clusters were fairly similar in terms of CDOM and turbidity, although the median and maximum
values of DOC, aCDOM(300), FDOM, and turbidity were consistently higher for Cluster 2 than
Cluster 1. Cluster 3 is clearly distinct as riverine and river-influenced waters which are much



Research Article Vol. 30, No. 23 / 7 Nov 2022 / Optics Express 41601

Fig. 6. Histograms of optical and biogeochemical parameters for the three k-means clusters.

Table 3. Statistics of the parameters shown in Fig. 6 for the three k-means clusters.

Parameter
Cluster 1 (N= 97) Cluster 2 (N= 95) Cluster 3 (N= 23)

Median Range Median Range Median Range

AVW [nm] 542.3 521.1-556.4 561.1 551.8-584.4 582.1 568.5-597.3

Rrs(492)/Rrs(665) 2.4 1.73-5.5 1.4 0.95-2.04 0.68 0.51-1.08

Salinity 28.7 23.8-32.66 26.8 18.87-30.38 1.11 0.03-28.27

Chl-a [mg m−3] 4.03 0.94-26.42 9.58 0.96-35.99 2.8 1.19-28.25

DOC [mg L−1] 1.49 1.12-2 1.74 1.18-2.88 2.97 2.81-3.91

Turbidity [FNU] 1.07 0.06-2.8 2.02 0.41-5.37 4.38 1.94-10.66

aCDOM(300) [m−1] 3.37 1.96-4.64 3.66 1.73-12.45 14.18 3.73-24.72

FDOM [QSU] 9.48 4.68-19.27 13.67 6.77-28.34 43.37 14.02-75.13

S275:295 [nm−1] 0.021 0.019-0.024 0.021 0.014-0.022 0.014 0.013-0.021
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fresher, more turbid, with significantly higher DOC, aCDOM(300) and FDOM. This cluster was
also characterized by lower S275:295, indicative of higher molecular weight, less photodegraded,
terrestrially derived CDOM.

3.4. Spatial and seasonal variability in Rrs(λ) spectral shape

The spatial distribution of Rrs(λ) spectral shape for the full dataset, indexed continuously by
AVW and discretely by the three k-means clusters, is shown in Fig. 7. As described previously,
the highest AVW was observed very nearshore within the Housatonic and Connecticut Rivers
and river plume regions, coinciding with the location of k-means Cluster 3. AVW was also
higher in the western LIS, where k-means Cluster 2 tended to be more dominant. The lowest
AVW was observed most consistently in the deeper, more marine-influenced waters of the
central and eastern LIS where k-means Cluster 1 was most prevalent, consistent with the higher
salinity and lower FDOM and turbidity associated with this cluster. There are, however, several
point locations where multiple different clusters were observed, highlighting the importance
of temporal/seasonal dynamics in the processes driving spectral shape at a given location (e.g.,
river discharge, storm events, phytoplankton blooms). Indeed, measurements in the western LIS
(west of 73° W longitude), where the dataset had the fullest temporal representation over the
year, showed a strong seasonal shift in spectral shape between late fall/early winter (Nov-Jan)
and summer months (Jul-Sep) (Fig. 8). In summer, one of the typical phytoplankton bloom
periods in LIS [71], spectra have a more peaked shape, with lower reflectance in the blue and
more prominent chlorophyll fluorescence peaks around 685 nm, consistent with previous studies
[32,38,71]. This is accompanied by a positive shift in AVW, with the median AVW increasing
from 545.4 nm to 564.7 nm (shifting from k-means Cluster 1 to Cluster 2), and a doubling of the
median Chl-a from 3.99 to 8.03 mg m−3. While Chl-a significantly increased in the summer, a
slight overall decrease in aCDOM(300) was observed (data not shown), confirming phytoplankton
as the primary seasonal control on Rrs(λ) spectral shape in the western region of the Sound. It is
important to note that, in addition to the increase in total algal biomass (Chl-a), phytoplankton
community composition and size structure are also highly variable spatially and seasonally in LIS,
which can have secondary impacts on phytoplankton scattering and absorption characteristics
and resulting Rrs(λ) spectral shape [32,33,72].

3.5. Closer look at river-to-sound gradients

An open question in nearshore biogeochemistry is to what extent rivers and their plumes act
as transformers, rather than transporters, of natural and anthropogenic terrigenous materials to
coastal waters. To better understand the extent of optical variability within these localized zones
in LIS and capture associated spatial gradients in water properties – both relevant to amount
and quality of organic carbon - we conducted multiple sampling trips in the Housatonic and
Connecticut Rivers and their outflows into LIS. Here, we focus on two of these trips as case studies
of Rrs(λ) spectral variability along the river-to-Sound aquatic continuum. Figure 9 shows the
nRrs(λ) spectra and ancillary measurements from a transect in the Housatonic River on July 16,
2021. From upriver to the river mouth (stations 1-3; ∼4.5 km distance), spectral shape and water
properties were quite similar, illustrating a typical river freshwater endmember with elevated
reflectance in the red and diminished reflectance in the blue resultant from higher turbidity and
aCDOM(300) with relatively low values of S275:295 (0.014 nm−1) These IOPs result in higher AVW
values and the “tri-peaked” spectral shape characterized by k-means Cluster 3. Interestingly,
a slight increase in turbidity was observed towards the river mouth accompanied by a slight
increase in AVW, potentially a product of greater turbulence, vertical mixing, and flocculation in
this area [73]. At station 4 (1.7 km downstream of station 3), a shift in spectral shape occurs with
a slightly more pronounced green peak along with a decrease in AVW, turbidity and aCDOM(300).
From station 5 to station 7, ultimately extending ∼6 km southeast of the river mouth, salinity,



Research Article Vol. 30, No. 23 / 7 Nov 2022 / Optics Express 41603

Fig. 7. Maps showing the spatial distribution of AVW (top) and the three k-means clusters
(bottom). Marker size in the AVW map is scaled discretely by thirds of the AVW range for
visual comparison (smaller marker= higher AVW).
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Fig. 8. Seasonal shift in Rrs(λ) spectral shape, AVW, k-means cluster number, and Chl-a
in the western LIS between late fall/early winter (Nov-Jan) and summer (Jul-Sep). In the
spectral plot, the filled region shows the range of all spectra within each seasonal grouping
and the solid line is the spectral mean. Dashed lines in the histogram plots indicate median
values.

Chl-a and S275:295 increase to their maximum values of 26.45, 4.96 mg m−3, and 0.017 nm−1

respectively, while turbidity and aCDOM(300) decrease to their minimum values of 1.83 FNU and
8.06 m−1. These biogeochemical changes led to even more pronounced green reflectance peaks,
lower reflectance in the yellow-to-red, and lower AVW values. While stations 1-4 are all grouped
into k-means Cluster 3, and stations 5-7 into Cluster 2, AVW is shown here to be highly effective
at tracking more subtle changes in spectral shape within each cluster, integrating the impact of
several water quality parameters and demonstrating an advantage of using a continuous metric
over discrete classification schemes.

Figure 10 shows the same as Fig. 9 but for a sampling trip in the Connecticut River plume
on May 6, 2021. Compared to the Housatonic River, the Connecticut River endmember (i.e.,
salinity< 1) had a very similar nRrs(λ) spectrum, with higher turbidity and lower aCDOM(300)
(4.92 FNU and 18.83 m−1 vs. 4.44 FNU and 24.72 m−1) at the time of observation (two months
earlier in the year). Stations 1-4, representing a linear transect from the river into the Sound,
displayed a high degree of spectral variability within a relatively small spatial extent (∼7.5 km),
including spectra from all three k-means clusters. From station 1 to station 2 (3.6 km downstream),
both assigned to k-means Cluster 3, AVW and aCDOM(300) decreased while turbidity, salinity,
S275:295 and Chl-a increased. From station 2 to station 3, AVW and aCDOM(300) decreased
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Fig. 9. Gradients in Rrs(λ) spectral shape and ancillary measurements from a transect in the
Housatonic River plume on July 16, 2021. Background is a Sentinel-2 MSI RGB composite
(20 m resolution) from the same day, downloaded from https://scihub.copernicus.eu/.

https://scihub.copernicus.eu/
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substantially from 582.1 nm to 560.9 nm and 15.39 m−1 to 7.17 m−1, respectively, along with a
decrease in turbidity and Chl-a and a shift from k-means Cluster 3 to Cluster 2. From station 3 to
station 4, aCDOM(300), turbidity, and AVW continued to decrease and Chl-a remained low, evident
in lower reflectance across the orange-to-NIR and more domed reflectance in the blue-to-green,
as characterized by k-means Cluster 1. The remaining stations showed varying levels of AVW,
turbidity and aCDOM(300) depending on proximity to the plume waters. Interestingly, station 6,
located within a very nearshore cove to the east of the Connecticut River mouth, had the lowest
AVW, aCDOM(300), turbidity (536.5 nm, 2.52 m−1, and 1.21 FNU, respectively), and highest
salinity (31.33) and S275:295 (0.021 nm−1) of all the stations sampled. This more marine signature
(i.e., Cluster 1) in such a nearshore location exemplifies the complex water circulation of the
Connecticut River plume, which varies in response to the combined influence of freshwater
discharge, tidal stage, and wind forcing [74].

3.6. Application of AVW and the Quality Water Index Polynomial (QWIP) to field and
satellite Rrs(λ) data in LIS

Figure 11 shows how the in situ and OLCI-derived Rrs(λ) in LIS fall along the global QWIP
relationship, along with histograms of the QWIP scores, defined as the difference between
the measured spectrum’s NDI and the QWIP. The in situ hyperspectral observations generally
followed the QWIP, with the majority of points falling along or slightly below the polynomial.
This is reflected in nearly all spectra (96%) having QWIP scores within the ±0.2 threshold used in
Dierssen et al. [31] to determine “passing” spectra. The three optical clusters were well-separated
along the QWIP and show similar QWIP score distributions, although Cluster 2 and Cluster
3 appeared to fall outside of the ±0.2 threshold slightly more often than Cluster 1. For the
OLCI-derived Rrs(λ), differences between the three AC methods were apparent. First, the number
of “valid” matchups varied between the three algorithms due to differences in flagging criteria
and thresholds (N = 30, N = 76, and N = 52 for SeaDAS, Polymer, and ACOLITE, respectively).
In addition to having the highest number of matchups, the Polymer-derived data most closely
followed the QWIP and generally fell more within the range of the in situ data than those derived
from SeaDAS and ACOLITE. When viewed in terms of the QWIP scores for each method, 100%
of the Polymer data had “passing” QWIP scores within ±0.2, while only 70% and 44% of the
spectra from SeaDAS and ACOLITE, respectively, had scores within the ±0.2 threshold. SeaDAS
showed a large spread in QWIP scores, exceeding both positive and negative 0.2, while ACOLITE
had a strong positive bias due to frequent overestimation of Rrs(λ) at the blue end of the spectrum.
This is demonstrated by the inset comparison of Rrs(λ) spectra from the three methods with the
in situ Rrs(λ) weighted to OLCI wavebands in Fig. 11. While the QWIP technique provides an
assessment of Rrs(λ) spectral quality based on spectral shape, validation of satellite retrievals
with in situ data is still essential to evaluate the accuracy of reflectance magnitude. The results
presented here are in agreement with Sherman et al. (submitted), who, using different metrics,
also found that the Polymer AC approach resulted in more valid matchups and better agreement
between OLCI and in situ Rrs(λ) in LIS, compared to SeaDAS and ACOLITE.



Research Article Vol. 30, No. 23 / 7 Nov 2022 / Optics Express 41607

Fig. 10. Gradients in Rrs(λ) spectral shape and ancillary measurements from a transect in the
Connecticut River plume on May 6, 2021. Background is a Sentinel-2 MSI RGB composite
(20 m resolution) from the following day, downloaded from https://scihub.copernicus.eu/.

https://scihub.copernicus.eu/
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Fig. 11. The QWIP relationship between AVW and the NDI at blue-green and red bands,
as described in Dierssen et al. [31], with the in situ hyperspectral Rrs(λ) from the LIS
dataset colored by k-means cluster membership (top left) and the satellite matchup Rrs(λ)
from Sentinel-3A/B OLCI (2018-2021) processed using three different AC algorithms
(bottom left): SeaDAS L2gen (yellow circles), Polymer (teal squares), and ACOLITE (pink
diamonds). The distribution of QWIP scores are shown with corresponding colors in the
right panels. The inlaid figure shows an example of satellite-derived Rrs(λ) spectra from the
three AC approaches compared with the in situ Rrs(λ) weighted to OLCI wavebands (shown
in black).

4. Conclusions

The interplay of biogeochemical, ecological, and physical processes – intertwined with human
influence – shapes the bio-optical complexity of coastal waters, also driving variability in
Rrs(λ), the fundamental quantity used in ocean color remote sensing. Here, we investigated the
bio-optical characteristics of nearshore waters across a heavily urbanized and highly dynamic
estuarine ecosystem and their connection to the shape of hyperspectral Rrs(λ) through two
optical classification approaches. Continuous spectral indexing using the AVW technique and
classification using k-means clustering revealed comparable patterns in Rrs(λ) spectral shape
and underlying biogeochemistry. Our Rrs(λ) dataset in LIS, spanning every season over multiple
years and covering a wide range of water properties, was best described by three optical clusters,
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which were well-separated along the continuum of AVW values and displayed notable differences
in physical, biogeochemical, and optical parameters. The first two clusters described 89% of the
Rrs(λ) observations, the first characterized by lower AVW, Chl-a, turbidity, and DOC/DOM, and
higher salinity and S275:295. Phytoplankton dynamics was the strongest driver of spectral shape
variability between these two clusters, with CDOM and NAP playing a secondary role. Spatially,
Cluster 2, characterized by more peaked green reflectance and cholorophyll fluorescence in
the red, was most prevalent in the western LIS, a region of high productivity and terrestrial
influence. Cluster 1 was predominant in the more marine-influenced central and eastern LIS
basins. However, strong seasonality in Rrs(λ) spectral shape was observed in the western LIS,
with higher Chl-a, AVW, and more peaked spectra (i.e., Cluster 2) during the summer bloom
period (Jul-Sep) compared with less productive fall and winter months (Nov-Jan). Cluster 3 was
confined to waters with a strong riverine influence and exhibited the highest AVW, a combined
effect of higher orange-to-NIR and lower blue reflectance resulting from increased sediment
backscattering (turbidity) and CDOM absorption, respectively.

In the river and river plume regions of the Housatonic and Connecticut Rivers, strong gradients
in Rrs(λ) spectral shape were observed, corresponding with changes in AVW, salinity, CDOM
absorption and spectral slope, turbidity, and Chl-a. While all three of the optical clusters
were observed in these highly dynamic, localized zones, more subtle shifts in spectral shape
and water properties within each cluster were effectively captured using AVW. Compared to
k-means clustering, AVW enabled the detection of finer-scale spatial, temporal, and spectral
variability without being limited by the need for training or a priori determination of an optimal
number of clusters. The continuous output of AVW can potentially be applied to bio-optical
algorithm development, refinement, and blending in coastal and inland waters, where efforts have
previously relied on OWT frameworks from traditional or “fuzzy” clustering techniques. We also
demonstrated the application of AVW and the QWIP method for evaluating the quality of in situ
hyperspectral Rrs(λ) data and the performance of AC approaches for retrieving satellite Rrs(λ)
in urban coastal environments. From our assessment of three different AC methods applied to
Sentinel-3 OLCI, we determined Polymer to be the most effective for the LIS region.

Utilizing the full range of available spectral information, AVW can be applied to the constellation
of existing multispectral sensors, but is particularly well suited for hyperspectral measurements
from airborne and space-based platforms including NASA’s global-scale Plankton, Aerosol,
Cloud, ocean Ecosystems (PACE) mission, the Geosynchronous Littoral Imaging and Monitoring
Radiometer (GLIMR), and the Surface Biology and Geology (SBG) Designated Observable.
Such simple but scalable and integrative indicators of water quality state would be a valuable
complement to a suite of in situ and satellite-estimated water quality products across the continuum
of inland, estuarine, and coastal waters in LIS and beyond.
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