22 research outputs found

    Periodic Optimal Control, Dissipativity and MPC

    Get PDF
    Recent research has established the importance of (strict) dissipativity for proving stability of economic MPC in the case of an optimal steady state. In many cases, though, steady-state operation is not economically optimal and periodic operation of the system yields a better performance. In this technical note, we propose ways of extending the notion of (strict) dissipativity for periodic systems. We prove that optimal P-periodic operation and MPC stability directly follow, similarly to the steady-state case, which can be seen as a special case of the proposed framework. Finally, we illustrate the theoretical results with several simple examples

    Periodic Optimal Control, Dissipativity and MPC

    Full text link

    European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS).

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.The EU-ROS consortium (COST Action BM1203) was supported by the European Cooperation in Science and Technology (COST). The present overview represents the final Action dissemination summarizing the major achievements of COST Action BM1203 (EU-ROS) as well as research news and personal views of its members. Some authors were also supported by COST Actions BM1005 (ENOG) and BM1307 (PROTEOSTASIS), as well as funding from the European Commission FP7 and H2020 programmes, and several national funding agencies

    ISS-lyapunov functions for discontinuous discrete-time systems

    Get PDF
    Input-to-State Stability (ISS) and the ISS-Lyapunov function are useful tools for the analysis and design of nonlinear systems. Motivated by the fact that many feedback control laws, such as model predictive or event-based control, lead to discontinuous discrete-time dynamics, we investigate ISS-Lyapunov functions for such systems. ISS-Lyapunov functions were originally introduced in a so-called implication-form and, in many cases, this has been shown to be equivalent to an ISS-Lyapunov function of dissipative-form. However, for discontinuous dynamics, we demonstrate via an example that this equivalence no longer holds. We therefore propose a stronger implication-form ISS-Lyapunov function and provide a complete characterization of ISS-Lyapunov functions for discrete-time systems with discontinuous dynamics

    On Approximating Contractive Systems

    No full text

    Nonconservative Discrete-Time ISS Small-Gain Conditions for Closed Sets

    No full text
    corecore