215 research outputs found

    With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging

    Get PDF
    In patients with medically refractory focal epilepsy who are candidates for epilepsy surgery, concordant non-invasive neuroimaging data are useful to guide invasive electroencephalographic recordings or surgical resection. Simultaneous electroencephalography and functional magnetic resonance imaging recordings can reveal regions of haemodynamic fluctuations related to epileptic activity and help localize its generators. However, many of these studies (40-70%) remain inconclusive, principally due to the absence of interictal epileptiform discharges during simultaneous recordings, or lack of haemodynamic changes correlated to interictal epileptiform discharges. We investigated whether the presence of epilepsy-specific voltage maps on scalp electroencephalography correlated with haemodynamic changes and could help localize the epileptic focus. In 23 patients with focal epilepsy, we built epilepsy-specific electroencephalographic voltage maps using averaged interictal epileptiform discharges recorded during long-term clinical monitoring outside the scanner and computed the correlation of this map with the electroencephalographic recordings in the scanner for each time frame. The time course of this correlation coefficient was used as a regressor for functional magnetic resonance imaging analysis to map haemodynamic changes related to these epilepsy-specific maps (topography-related haemodynamic changes). The method was first validated in five patients with significant haemodynamic changes correlated to interictal epileptiform discharges on conventional analysis. We then applied the method to 18 patients who had inconclusive simultaneous electroencephalography and functional magnetic resonance imaging studies due to the absence of interictal epileptiform discharges or absence of significant correlated haemodynamic changes. The concordance of the results with subsequent intracranial electroencephalography and/or resection area in patients who were seizure free after surgery was assessed. In the validation group, haemodynamic changes correlated to voltage maps were similar to those obtained with conventional analysis in 5/5 patients. In 14/18 patients (78%) with previously inconclusive studies, scalp maps related to epileptic activity had haemodynamic correlates even when no interictal epileptiform discharges were detected during simultaneous recordings. Haemodynamic changes correlated to voltage maps were spatially concordant with intracranial electroencephalography or with the resection area. We found better concordance in patients with lateral temporal and extratemporal neocortical epilepsy compared to medial/polar temporal lobe epilepsy, probably due to the fact that electroencephalographic voltage maps specific to lateral temporal and extratemporal epileptic activity are more dissimilar to maps of physiological activity. Our approach significantly increases the yield of simultaneous electroencephalography and functional magnetic resonance imaging to localize the epileptic focus non-invasively, allowing better targeting for surgical resection or implantation of intracranial electrode array

    Clinical Neuroimaging Using 7 T MRI: Challenges and Prospects

    Get PDF
    The aim of this article is to illustrate the principal challenges, from the medical and technical point of view, associated with the use of ultrahigh field (UHF) scanners in the clinical setting and to present available solutions to circumvent these limitations. We would like to show the differences between UHF scanners and those used routinely in clinical practice, the principal advantages, and disadvantages, the different UHFs that are ready be applied to routine clinical practice such as susceptibility-weighted imaging, fluid-attenuated inversion recovery, 3-dimensional time of flight, magnetization-prepared rapid acquisition gradient echo, magnetization-prepared 2 rapid acquisition gradient echo, and diffusion-weighted imaging, the technical principles of these sequences, and the particularities of advanced techniques such as diffusion tensor imaging, spectroscopy, and functional imaging at 7TMR. Finally, the main clinical applications in the field of the neuroradiology are discussed and the side effects are reported

    Combined EEG-fMRI and ESI improves localisation of paediatric focal epilepsy

    Get PDF
    OBJECTIVE: Surgical treatment in epilepsy is effective if the epileptogenic zone (EZ) can be correctly localized and characterized. Here we use simultaneous Electroencephalography-functional MRI (EEG-fMRI) data to derive EEG-fMRI and Electrical Source Imaging (ESI) maps. Their yield and their individual and combined ability to 1) localize the epileptogenic zone and 2) predict seizure outcome was then evaluated. METHODS: Fifty-three children with drug-resistant epilepsy underwent EEG-fMRI. Interictal discharges were mapped using both EEG-fMRI haemodynamic responses and Electrical Source Imaging (ESI). A single localization was derived from each individual test (EEG-fMRI global maxima (GM)/ESI maxima) and from the combination of both maps (EEG-fMRI/ESI spatial intersection). To determine the localisation accuracy and its predictive performance the individual and combined test localisations were compared to the presumed EZ and to the postsurgical outcome. RESULTS: Fifty-two/53 patients had significant maps; 47/53 for EEG-fMRI; 44/53 for ESI; 34/53 had both. The epileptogenic zone was well characterised in 29 patients; 26 had an EEG-fMRI GM localisation which was correct in 11; 22 patients had ESI localisation which was correct in 17; 12 patients had combined EEG-fMRI and ESI which was correct in 11. Seizure outcome following resection was correctly predicted by EEG-fMRI GM in 8/20 patients, by the ESI maxima in 13/16. The combined EEG-fMRI/ESI region entirely predicted outcome in 9/9 patients including 3 with no lesion visible on MRI. INTERPRETATION: EEG-fMRI combined with ESI provides a simple unbiased localisation that may predict surgery better than each individual test including in MRI-negative patients

    Combined EEG-fMRI and ESI improves localisation of paediatric focal epilepsy

    Get PDF
    OBJECTIVE: Surgical treatment in epilepsy is effective if the epileptogenic zone (EZ) can be correctly localized and characterized. Here we use simultaneous Electroencephalography-functional MRI (EEG-fMRI) data to derive EEG-fMRI and Electrical Source Imaging (ESI) maps. Their yield and their individual and combined ability to 1) localize the epileptogenic zone and 2) predict seizure outcome was then evaluated. METHODS: Fifty-three children with drug-resistant epilepsy underwent EEG-fMRI. Interictal discharges were mapped using both EEG-fMRI haemodynamic responses and Electrical Source Imaging (ESI). A single localization was derived from each individual test (EEG-fMRI global maxima (GM)/ESI maxima) and from the combination of both maps (EEG-fMRI/ESI spatial intersection). To determine the localisation accuracy and its predictive performance the individual and combined test localisations were compared to the presumed EZ and to the postsurgical outcome. RESULTS: Fifty-two/53 patients had significant maps; 47/53 for EEG-fMRI; 44/53 for ESI; 34/53 had both. The epileptogenic zone was well characterised in 29 patients; 26 had an EEG-fMRI GM localisation which was correct in 11; 22 patients had ESI localisation which was correct in 17; 12 patients had combined EEG-fMRI and ESI which was correct in 11. Seizure outcome following resection was correctly predicted by EEG-fMRI GM in 8/20 patients, by the ESI maxima in 13/16. The combined EEG-fMRI/ESI region entirely predicted outcome in 9/9 patients including 3 with no lesion visible on MRI. INTERPRETATION: EEG-fMRI combined with ESI provides a simple unbiased localisation that may predict surgery better than each individual test including in MRI-negative patients

    EEG-fMRI in the presurgical evaluation of temporal lobe epilepsy.

    Get PDF
    Drug-resistant temporal lobe epilepsy (TLE) often requires thorough investigation to define the epileptogenic zone for surgical treatment. We used simultaneous interictal scalp EEG-fMRI to evaluate its value for predicting long-term postsurgical outcome

    Multiview classification and dimensionality reduction of scalp and intracranial EEG data through tensor factorisation

    Get PDF
    Electroencephalography (EEG) signals arise as a mixture of various neural processes that occur in different spatial, frequency and temporal locations. In classification paradigms, algorithms are developed that can distinguish between these processes. In this work, we apply tensor factorisation to a set of EEG data from a group of epileptic patients and factorise the data into three modes; space, time and frequency with each mode containing a number of components or signatures. We train separate classifiers on various feature sets corresponding to complementary combinations of those modes and components and test the classification accuracy of each set. The relative influence on the classification accuracy of the respective spatial, temporal or frequency signatures can then be analysed and useful interpretations can be made. Additionaly, we show that through tensor factorisation we can perform dimensionality reduction by evaluating the classification performance with regards to the number mode components and by rejecting components with insignificant contribution to the classification accuracy

    Music processing in preterm and full-term newborns: A psychophysiological interaction (PPI) approach in neonatal fMRI

    Get PDF
    Neonatal Intensive Care Units (NICU) provide special equipment designed to give life support for the increasing number of prematurely born infants and assure their survival. More recently NICU's strive to include developmentally oriented care and modulate sensory input for preterm infants. Music, among other sensory stimuli, has been introduced into NICUs, but without knowledge on the basic music processing in the brain of preterm infants. In this study, we explored the cortico-subcortical music processing of different types of conditions (Original music, Tempo modification, Key transposition) in newborns shortly after birth to assess the effective connectivity of the primary auditory cortex with the entire newborn brain. Additionally, we investigated if early exposure during NICU stay modulates brain processing of music in preterm infants at term equivalent age. We approached these two questions using Psychophysiological Interaction (PPI) analyses. A group of preterm infants listened to music (Original music) starting from 33 weeks postconceptional age until term equivalent age and were compared to two additional groups without music intervention; preterm infants and full-term newborns. Auditory cortex functional connectivity with cerebral regions known to be implicated in tempo and familiarity processing were identified only for preterm infants with music training in the NICU. Increased connectivity between auditory cortices and thalamus and dorsal striatum may not only reflect their sensitivity to the known music and the processing of its tempo as familiar, but these results are also compatible with the hypothesis that the previously listened music induces a more arousing and pleasant state. Our results suggest that music exposure in NICU's environment can induce brain functional connectivity changes that are associated with music processing
    • …
    corecore