11 research outputs found

    Genome analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    Get PDF
    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared t

    Cooperation of cancer drivers with regulatory germline variants shapes clinical outcomes

    Get PDF
    Pediatric malignancies including Ewing sarcoma (EwS) feature a paucity of somatic alterations except for pathognomonic driver-mutations that cannot explain overt variations in clinical outcome. Here, we demonstrate in EwS how cooperation of dominant oncogenes and regulatory germline variants determine tumor growth, patient survival and drug response. Binding of the oncogenic EWSR1-FLI1 fusion transcription factor to a polymorphic enhancerlike DNA element controls expression of the transcription factor MYBL2 mediating these phenotypes. Whole-genome and RNA sequencing reveals that variability at this locus is inherited via the germline and is associated with variable inter-tumoral MYBL2 expression. High MYBL2 levels sensitize EwS cells for inhibition of its upstream activating kinase CDK2 in vitro and in vivo, suggesting MYBL2 as a putative biomarker for anti-CDK2-therapy. Collectively, we establish cooperation of somatic mutations and regulatory germline variants as a major determinant of tumor progression and highlight the importance of integrating the regulatory genome in precision medicine

    Low-frequency variation near common germline susceptibility loci are associated with risk of Ewing sarcoma

    Get PDF
    Background: Ewing sarcoma (EwS) is a rare, aggressive solid tumor of childhood, adolescence and young adulthood associated with pathognomonic EWSR1-ETS fusion oncoproteins altering transcriptional regulation. Genome-wide association studies (GWAS) have identified 6 common germline susceptibility loci but have not investigated low-frequency inherited variants with minor allele frequencies below 5% due to limited genotyped cases of this rare tumor. Methods We investigated the contribution of rare and low-frequency variation to EwS susceptibility in the largest EwS genome-wide association study to date (733 EwS cases and 1,346 unaffected controls of European ancestry). Results We identified two low-frequency variants, rs112837127 and rs2296730, on chromosome 20 that were associated with EwS risk (OR = 0.186 and 2.038, respectively;P-value < 5x10(-8)) and located near previously reported common susceptibility loci. After adjusting for the most associated common variant at the locus, only rs112837127 remained a statistically significant independent signal (OR = 0.200, P-value = 5.84x10(-8)). Conclusions: These findings suggest rare variation residing on common haplotypes are important contributors to EwS risk. Impact Motivate future targeted sequencing studies for a comprehensive evaluation of low-frequency and rare variation around common EwS susceptibility loci

    Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    Get PDF
    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops

    Génomique comparée et développement de nouveaux outils bioinformatiques permettant l'analyse de la diversité métabolique des Eumycota

    No full text
    Bien que les Eumycota soient Ă©tudiĂ©s depuis de nombreuses annĂ©es, les raisons de leur diversitĂ© mĂ©tabolique restent Ă  ce jour largement inexpliquĂ©es. Afin d'Ă©tudier cette diversitĂ©, j'ai commencĂ© par identifier les protĂ©ines orthologues d'une cinquantaine d'espĂšces en utilisant une approche innovante qui tient compte des rĂ©sultats prĂ©dits par diffĂ©rentes mĂ©thodes. Les groupes d' orthologues ont ensuite Ă©tĂ© annotĂ©s et les fonctions enzymatiques ont Ă©tĂ© reportĂ©es sur des voies mĂ©taboliques de rĂ©fĂ©rence. Afin de pouvoir visualiser facilement la conservation d'une voie mĂ©tabolique donnĂ©e, j'ai dĂ©veloppĂ© un outil, FUNGIpath (www.fungipath.u-psud.fr). En analysant la conservation des diffĂ©rentes voies mĂ©taboliques de KEGG, j'ai essayĂ© de comprendre comment le mĂ©tabolisme fongique a pu Ă©voluer et se diversifier au cours de l'Ă©volution. A cotĂ© d'un petit nombre de voies mĂ©taboliques trĂšs bien conservĂ©es, l'analyse semble indiquer une moindre conservation et une plus grande diversitĂ© pour un grand nombre de ces voies. Étonnement, cette diversification ne semble ĂȘtre en accord ni avec la phylogĂ©nie, ni avec les milieux ou les modes de vie des champignons Ă©tudiĂ©s ici.Even if the Eumycota have been studied since a long time, the origin of their metabolic diversity are still unknown. ln order to better understand this diversity, 1 begun to identify orthologous genes in about fifty fungal genomes. To predict orthologous groups, 1 used an innovative approach which takes into account the results predicted by different methods. Then, the orthologous groups were annotated and the enzymatic activities were mapped to known metabolic pathways. These results were integrated in a database and 1 developed a new tool, FUNGIpath (www.fungipath.u-psud.fr). which allows to visualize the level of conservation of metabolic pathways. During the analysis of the KEGG pathways, 1 tried to understand how the fungal metabolism evolved during the Evolution. Apart from a small number of highly conserved metabolisms, the results show a lower conservation and a wide diversity for a lot of pathways. Surprisingly, this diversity doesn't seem to agree with the phylogeny, the lifestyle or the habitat of the studied Fungi.ORSAY-PARIS 11-BU Sciences (914712101) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Clonally Expanded T Cells Reveal Immunogenicity of Rhabdoid Tumors

    No full text
    International audienceRhabdoid tumors (RTs) are genomically simple pediatric cancers driven by the biallelic inactivation of SMARCB1, leading to SWI/SNF chromatin remodeler complex deficiency. Comprehensive evaluation of the immune infiltrates of human and mice RTs, including immunohistochemistry, bulk RNA sequencing and DNA methylation profiling studies showed a high rate of tumors infiltrated by T and myeloid cells. Single-cell RNA (scRNA) and T cell receptor sequencing highlighted the heterogeneity of these cells and revealed therapeutically targetable exhausted effector and clonally expanded tissue resident memory CD8+ T subpopulations, likely representing tumor-specific cells. Checkpoint blockade therapy in an experimental RT model induced the regression of established tumors and durable immune responses. Finally, we show that one mechanism mediating RTs immunogenicity involves SMARCB1-dependent re-expression of endogenous retroviruses and interferon-signaling activation

    The genome sequence of the model ascomycete fungus Podospora anserina.

    Get PDF
    ABSTRACT: BACKGROUND: The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. RESULTS: We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown. CONCLUSION: The features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope

    Genome-wide association study identifies multiple new loci associated with Ewing sarcoma susceptibility.

    Get PDF
    Ewing sarcoma (EWS) is a pediatric cancer characterized by the EWSR1-FLI1 fusion. We performed a genome-wide association study of 733 EWS cases and 1346 unaffected individuals of European ancestry. Our study replicates previously reported susceptibility loci at 1p36.22, 10q21.3 and 15q15.1, and identifies new loci at 6p25.1, 20p11.22 and 20p11.23. Effect estimates exhibit odds ratios in excess of 1.7, which is high for cancer GWAS, and striking in light of the rarity of EWS cases in familial cancer syndromes. Expression quantitative trait locus (eQTL) analyses identify candidate genes at 6p25.1 (RREB1) and 20p11.23 (KIZ). The 20p11.22 locus is near NKX2-2, a highly overexpressed gene in EWS. Interestingly, most loci reside near GGAA repeat sequences and may disrupt binding of the EWSR1-FLI1 fusion protein. The high locus to case discovery ratio from 733 EWS cases suggests a genetic architecture in which moderate risk SNPs constitute a significant fraction of risk
    corecore