100 research outputs found

    Baker Street Wonderpass: evaluation of improvement works

    Get PDF
    Summary: Baker Street Quarter Partnership identified the pedestrian subway under the Marylebone Road as an area that many of its members would like to see improved. Researchers from the Policy Studies Institute were commissioned to provide an impartial evaluation of improvement works that were carried out to transform the subway into the ‘Baker Street Wonderpass’. The views of users were assessed through an online survey of Baker Street Quarter members (June 2015), pedestrian counting and face-to-face surveys both before the improvement works (July 2015) and after the Wonderpass had opened (February 2016). The pre-works surveys took place in July 2015, with 206 subway users’ answering a total of 12 questions. The post-works surveys took place in February 2016 with 163 subway users answering a total of 15 questions. The survey was supplemented by ‘vox-pop’ interviews. Pedestrian counts before and after the improvement works show a very large increase in pedestrian traffic after the improvement works were completed. After the improvement works, morning usage increased by 153.8%, afternoon usage increasing by 27.8%, and evening usage increasing by 70.8%. Survey results showed a substantial improvement in user’s satisfaction with the lighting, cleanliness, overall appearance, safety, signage and visibility of the subway. The redevelopment of the subway and the opening of the Wonderpass have been a clear success. 83.9% of users said that the subway was ‘much better’, and 98.4% of users said that they thought the subway was ‘better’ or ‘much better’ after the improvement works. Overall, the investment in the Marylebone Road underpass has greatly improved usage levels and user perceptions of the subway and some users stated that they used the subway solely to see the renovations and new displays. While users previously complained about the cleanliness, lighting and appearance of the subway, by February 2016 it has been successfully transformed into a much safer, cleaner, and more desirable ‘Wonderpass’ to cross Marylebon

    Genetic diversity and expanding nonindigenous range of the rhizocephalan Loxothylacus panopaei parasitizing mud crabs in the western North Atlantic

    Get PDF
    Nonindigenous parasite introductions and range expansions have become a major concern because of their potential to restructure communities and impact fisheries. Molecular markers provide an important tool for reconstructing the pattern of introduction. The parasitic castrator Loxothylacus panopaei, a rhizocephalan barnacle, infects estuarine mud crabs in the Gulf of Mexico and southeastern Florida. A similar parasite introduced into Chesapeake Bay before 1964, presumably via infected crabs associated with oysters from the Gulf of Mexico, was identified as L. panopaei. Our samples of this species during 2004 and 2005 show that the introduced range has expanded as far south as Edgewater, Florida, just north of the northern endemic range limit. The nonindigenous range expanded southward at a rate of up to 165 km/yr with relatively high prevalence, ranging from 30 to 93%. Mitochondrial DNA sequences from the cytochrome oxidase I gene showed that these nonindigenous L. panopaei are genetically distinct from the endemic parasites in southeastern Florida and the eastern Gulf of Mexico. The genetic difference was also associated with distinct host spectra. These results are incompatible with an eastern Gulf source population, but suggest that unrecognized genetic and phenotypic population structure may occur among Gulf of Mexico populations of Loxothvlacu

    Physical Stress, Not Biotic Interactions, Preclude an Invasive Grass from Establishing in Forb-Dominated Salt Marshes

    Get PDF
    Biological invasions have become the focus of considerable concern and ecological research, yet the relative importance of abiotic and biotic factors in controlling the invasibility of habitats to exotic species is not well understood. Spartina species are highly invasive plants in coastal wetlands; however, studies on the factors that control the success or failure of Spartina invasions across multiple habitat types are rare and inconclusive.We examined the roles of physical stress and plant interactions in mediating the establishment of the smooth cordgrass, Spartina alterniflora, in a variety of coastal habitats in northern China. Field transplant experiments showed that cordgrass can invade mudflats and low estuarine marshes with low salinity and frequent flooding, but cannot survive in salt marshes and high estuarine marshes with hypersaline soils and infrequent flooding. The dominant native plant Suaeda salsa had neither competitive nor facilitative effects on cordgrass. A common garden experiment revealed that cordgrass performed significantly better when flooded every other day than when flooded weekly. These results suggest that physical stress rather than plant interactions limits cordgrass invasions in northern China.We conclude that Spartina invasions are likely to be constrained to tidal flats and low estuarine marshes in the Yellow River Delta. Due to harsh physical conditions, salt marshes and high estuarine marshes are unlikely to be invaded. These findings have implications for understanding Spartina invasions in northern China and on other coasts with similar biotic and abiotic environments

    Development and Application of Microsatellites in Carcinus maenas: Genetic Differentiation between Northern and Central Portuguese Populations

    Get PDF
    Carcinus maenas, the common shore crab of European coastal waters, has recently gained notoriety due to its globally invasive nature associated with drastic ecological and economic effects. The native ubiquity and worldwide importance of C. maenas has resulted in it becoming one of the best-studied estuarine crustacean species globally. Accordingly, there is significant interest in investigating the population genetic structure of this broadly distributed crab along European and invaded coastlines. Here, we developed polymerase chain reaction (PCR) primers for one dinucleotide and two trinucleotide microsatellite loci, resulting from an enrichment process based on Portuguese populations. Combining these three new markers with six existing markers, we examined levels of genetic diversity and population structure of C. maenas in two coastal regions from Northern and Central Portugal. Genotypes showed that locus polymorphism ranged from 10 to 42 alleles (N = 135) and observed heterozygosity per locus ranged from 0.745 to 0.987 with expected heterozygosity ranging from 0.711 to 0.960; values typical of marine decapods. The markers revealed weak, but significant structuring among populations (global FST = 0.004) across a 450 km (over-water distance) spatial scale. Combinations of these and existing markers will be useful for studying population genetic parameters at a range of spatial scales of C. maenas throughout its expanding species range

    How to think about informal proofs

    Get PDF
    This document is the Accepted Manuscript version of the following article: Brendan Larvor, ‘How to think about informal proofs’, Synthese, Vol. 187(2): 715-730, first published online 9 September 2011. The final publication is available at Springer via doi:10.1007/s11229-011-0007-5It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it accommodates the many mathematical proofs that include actions on objects other than propositions; (v) this conception of logic permits the articulation of project-sized tasks for the philosophy of mathematical practice, thereby supplying a partial characterisation of normal research in the fieldPeer reviewedFinal Accepted Versio

    Facilitation and Competition among Invasive Plants: A Field Experiment with Alligatorweed and Water Hyacinth

    Get PDF
    Ecosystems that are heavily invaded by an exotic species often contain abundant populations of other invasive species. This may reflect shared responses to a common factor, but may also reflect positive interactions among these exotic species. Armand Bayou (Pasadena, TX) is one such ecosystem where multiple species of invasive aquatic plants are common. We used this system to investigate whether presence of one exotic species made subsequent invasions by other exotic species more likely, less likely, or if it had no effect. We performed an experiment in which we selectively removed exotic rooted and/or floating aquatic plant species and tracked subsequent colonization and growth of native and invasive species. This allowed us to quantify how presence or absence of one plant functional group influenced the likelihood of successful invasion by members of the other functional group. We found that presence of alligatorweed (rooted plant) decreased establishment of new water hyacinth (free-floating plant) patches but increased growth of hyacinth in established patches, with an overall net positive effect on success of water hyacinth. Water hyacinth presence had no effect on establishment of alligatorweed but decreased growth of existing alligatorweed patches, with an overall net negative effect on success of alligatorweed. Moreover, observational data showed positive correlations between hyacinth and alligatorweed with hyacinth, on average, more abundant. The negative effect of hyacinth on alligatorweed growth implies competition, not strong mutual facilitation (invasional meltdown), is occurring in this system. Removal of hyacinth may increase alligatorweed invasion through release from competition. However, removal of alligatorweed may have more complex effects on hyacinth patch dynamics because there were strong opposing effects on establishment versus growth. The mix of positive and negative interactions between floating and rooted aquatic plants may influence local population dynamics of each group and thus overall invasion pressure in this watershed

    Establishment Failure in Biological Invasions: A Case History of Littorina littorea in California, USA

    Get PDF
    The early stages of biological invasions are rarely observed, but can provide significant insight into the invasion process as well as the influence vectors have on invasion success or failure.We characterized three newly discovered populations of an introduced gastropod, Littorina littorea (Linné, 1758), in California, USA, comparing them to potential source populations in native Europe and the North American East Coast, where the snail is also introduced. Demographic surveys were used to assess spatial distribution and sizes of the snail in San Francisco and Anaheim Bays, California. Mitochondrial DNA was sequenced and compared among these nascent populations, and various populations from the North American East Coast and Europe, to characterize the California populations and ascertain their likely source. Demographic and genetic data were considered together to deduce likely vectors for the California populations. We found that the three large California L. littorea populations contained only adult snails and had unexpectedly high genetic diversity rather than showing an extreme bottleneck as typically expected in recent introductions. Haplotype diversity in Californian populations was significantly reduced compared to European populations, but not compared to East Coast populations. Genetic analyses clearly suggested the East Coast as the source region for the California introductions.The California L. littorea populations were at an early, non-established phase of invasion with no evidence of recruitment. The live seafood trade is the most likely invasion vector for these populations, as it preferentially transports large numbers of adult L. littorea, matching the demographic structure of the introduced California L. littorea populations. Our results highlight continued operation of live seafood trade vectors and the influence of vectors on the demographic and genetic structure of the resulting populations, especially early stages of the invasion process

    Competitive Interactions between Invasive Nile Tilapia and Native Fish: The Potential for Altered Trophic Exchange and Modification of Food Webs

    Get PDF
    Recent studies have highlighted both the positive and negative impacts of species invasions. Most of these studies have been conducted on either immobile invasive plants or sessile fauna found at the base of food webs. Fewer studies have examined the impacts of vagile invasive consumers on native competitors. This is an issue of some importance given the controlling influence that consumers have on lower order plants and animals. Here, we present results of laboratory experiments designed to assess the impacts of unintended aquaculture releases of the Nile tilapia (Oreochromis niloticus), in estuaries of the Gulf of Mexico, on the functionally similar redspotted sunfish (Lepomis miniatus). Laboratory choice tests showed that tilapia prefer the same structured habitat that native sunfish prefer. In subsequent interspecific competition experiments, agonistic tilapia displaced sunfish from their preferred structured habitats. When a piscivore (largemouth bass) was present in the tank with both species, the survival of sunfish decreased. Based on these findings, if left unchecked, we predict that the proliferation of tilapia (and perhaps other aggressive aquaculture fishes) will have important detrimental effects on the structure of native food webs in shallow, structured coastal habitats. While it is likely that the impacts of higher trophic level invasive competitors will vary among species, these results show that consequences of unintended releases of invasive higher order consumers can be important

    "Nested" cryptic diversity in a widespread marine ecosystem engineer: a challenge for detecting biological invasions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecosystem engineers facilitate habitat formation and enhance biodiversity, but when they become invasive, they present a critical threat to native communities because they can drastically alter the receiving habitat. Management of such species thus needs to be a priority, but the poorly resolved taxonomy of many ecosystem engineers represents a major obstacle to correctly identifying them as being either native or introduced. We address this dilemma by studying the sea squirt <it>Pyura stolonifera</it>, an important ecosystem engineer that dominates coastal communities particularly in the southern hemisphere. Using DNA sequence data from four independently evolving loci, we aimed to determine levels of cryptic diversity, the invasive or native status of each regional population, and the most appropriate sampling design for identifying the geographic ranges of each evolutionary unit.</p> <p>Results</p> <p>Extensive sampling in Africa, Australasia and South America revealed the existence of "nested" levels of cryptic diversity, in which at least five distinct species can be further subdivided into smaller-scale genetic lineages. The ranges of several evolutionary units are limited by well-documented biogeographic disjunctions. Evidence for both cryptic native diversity and the existence of invasive populations allows us to considerably refine our view of the native versus introduced status of the evolutionary units within <it>Pyura stolonifera </it>in the different coastal communities they dominate.</p> <p>Conclusions</p> <p>This study illustrates the degree of taxonomic complexity that can exist within widespread species for which there is little taxonomic expertise, and it highlights the challenges involved in distinguishing between indigenous and introduced populations. The fact that multiple genetic lineages can be native to a single geographic region indicates that it is imperative to obtain samples from as many different habitat types and biotic zones as possible when attempting to identify the source region of a putative invader. "Nested" cryptic diversity, and the difficulties in correctly identifying invasive species that arise from it, represent a major challenge for managing biodiversity.</p
    corecore