103 research outputs found

    An introduction to time-resolved decoding analysis for M/EEG

    Full text link
    The human brain is constantly processing and integrating information in order to make decisions and interact with the world, for tasks from recognizing a familiar face to playing a game of tennis. These complex cognitive processes require communication between large populations of neurons. The non-invasive neuroimaging methods of electroencephalography (EEG) and magnetoencephalography (MEG) provide population measures of neural activity with millisecond precision that allow us to study the temporal dynamics of cognitive processes. However, multi-sensor M/EEG data is inherently high dimensional, making it difficult to parse important signal from noise. Multivariate pattern analysis (MVPA) or "decoding" methods offer vast potential for understanding high-dimensional M/EEG neural data. MVPA can be used to distinguish between different conditions and map the time courses of various neural processes, from basic sensory processing to high-level cognitive processes. In this chapter, we discuss the practical aspects of performing decoding analyses on M/EEG data as well as the limitations of the method, and then we discuss some applications for understanding representational dynamics in the human brain

    Decoding dynamic brain patterns from evoked responses: A tutorial on multivariate pattern analysis applied to time-series neuroimaging data

    Get PDF
    Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analysing fMRI data. Although decoding methods have been extensively applied in Brain Computing Interfaces (BCI), these methods have only recently been applied to time-series neuroimaging data such as MEG and EEG to address experimental questions in Cognitive Neuroscience. In a tutorial-style review, we describe a broad set of options to inform future time-series decoding studies from a Cognitive Neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to 'decode' different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalisation, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time-series decoding experiments.Comment: 64 pages, 15 figure

    Decoding images in the mind's eye : the temporal dynamics of visual imagery

    Get PDF
    Mental imagery is the ability to generate images in the mind in the absence of sensory input. Both perceptual visual processing and internally generated imagery engage large, overlapping networks of brain regions. However, it is unclear whether they are characterized by similar temporal dynamics. Recent magnetoencephalography work has shown that object category information was decodable from brain activity during mental imagery, but the timing was delayed relative to perception. The current study builds on these findings, using electroencephalography to investigate the dynamics of mental imagery. Sixteen participants viewed two images of the Sydney Harbour Bridge and two images of Santa Claus. On each trial, they viewed a sequence of the four images and were asked to imagine one of them, which was cued retroactively by its temporal location in the sequence. Time-resolved multivariate pattern analysis was used to decode the viewed and imagined stimuli. Although category and exemplar information was decodable for viewed stimuli, there were no informative patterns of activity during mental imagery. The current findings suggest stimulus complexity, task design and individual differences may influence the ability to successfully decode imagined images. We discuss the implications of these results in the context of prior findings of mental imagery

    Temporal dissociation of neural activity underlying synesthetic and perceptual colors

    Get PDF
    Grapheme-color synesthetes experience color when seeing achromatic symbols. We examined whether similar neural mechanisms underlie color perception and synesthetic colors using magnetoencephalography. Classification models trained on neural activity from viewing colored stimuli could distinguish synesthetic color evoked by achromatic symbols after a delay of ∼100 ms. Our results provide an objective neural signature for synesthetic experience and temporal evidence consistent with higher-level processing in synesthesia

    Capacity for movement is an organisational principle in object representations

    Get PDF
    The ability to perceive moving objects is crucial for threat identification and survival. Recent neuroimaging evidence has shown that goal-directed movement is an important element of object processing in the brain. However, prior work has primarily used moving stimuli that are also animate, making it difficult to disentangle the effect of movement from aliveness or animacy in representational categorisation. In the current study, we investigated the relationship between how the brain processes movement and aliveness by including stimuli that are alive but still (e.g., plants), and stimuli that are not alive but move (e.g., waves). We examined electroencephalographic (EEG) data recorded while participants viewed static images of moving or non-moving objects that were either natural or artificial. Participants classified the images according to aliveness, or according to capacity for movement. Movement explained significant variance in the neural data over and above that of aliveness, showing that capacity for movement is an important dimension in the representation of visual objects in humans

    A humanness dimension to visual object coding in the brain

    Get PDF
    Neuroimaging studies investigating human object recognition have primarily focused on a relatively small number of object categories, in particular, faces, bodies, scenes, and vehicles. More recent studies have taken a broader focus, investigating hypothesized dichotomies, for example, animate versus inanimate, and continuous feature dimensions, such as biologically similarity. These studies typically have used stimuli that are identified as animate or inanimate, neglecting objects that may not fit into this dichotomy. We generated a novel stimulus set including standard objects and objects that blur the animate-inanimate dichotomy, for example, robots and toy animals. We used MEG time-series decoding to study the brain's emerging representation of these objects. Our analysis examined contemporary models of object coding such as dichotomous animacy, as well as several new higher order models that take into account an object's capacity for agency (i.e. its ability to move voluntarily) and capacity to experience the world. We show that early (0–200 ​ms) responses are predicted by the stimulus shape, assessed using a retinotopic model and shape similarity computed from human judgments. Thereafter, higher order models of agency/experience provided a better explanation of the brain's representation of the stimuli. Strikingly, a model of human similarity provided the best account for the brain's representation after an initial perceptual processing phase. Our findings provide evidence for a new dimension of object coding in the human brain – one that has a “human-centric” focus

    Overlapping neural representations for the position of visible and imagined objects

    Full text link
    Humans can covertly track the position of an object, even if the object is temporarily occluded. What are the neural mechanisms underlying our capacity to track moving objects when there is no physical stimulus for the brain to track? One possibility is that the brain 'fills-in' information about imagined objects using internally generated representations similar to those generated by feed-forward perceptual mechanisms. Alternatively, the brain might deploy a higher order mechanism, for example using an object tracking model that integrates visual signals and motion dynamics. In the present study, we used EEG and time-resolved multivariate pattern analyses to investigate the spatial processing of visible and imagined objects. Participants tracked an object that moved in discrete steps around fixation, occupying six consecutive locations. They were asked to imagine that the object continued on the same trajectory after it disappeared and move their attention to the corresponding positions. Time-resolved decoding of EEG data revealed that the location of the visible stimuli could be decoded shortly after image onset, consistent with early retinotopic visual processes. For processing of unseen/imagined positions, the patterns of neural activity resembled stimulus-driven mid-level visual processes, but were detected earlier than perceptual mechanisms, implicating an anticipatory and more variable tracking mechanism. Encoding models revealed that spatial representations were much weaker for imagined than visible stimuli. Monitoring the position of imagined objects thus utilises similar perceptual and attentional processes as monitoring objects that are actually present, but with different temporal dynamics. These results indicate that internally generated representations rely on top-down processes, and their timing is influenced by the predictability of the stimulus.Comment: All data and analysis code for this study are available at https://osf.io/8v47t

    Human EEG recordings for 1,854 concepts presented in rapid serial visual presentation streams

    Get PDF
    The neural basis of object recognition and semantic knowledge has been extensively studied but the high dimensionality of object space makes it challenging to develop overarching theories on how the brain organises object knowledge. To help understand how the brain allows us to recognise, categorise, and represent objects and object categories, there is a growing interest in using large-scale image databases for neuroimaging experiments. In the current paper, we present THINGS-EEG, a dataset containing human electroencephalography responses from 50 subjects to 1,854 object concepts and 22,248 images in the THINGS stimulus set, a manually curated and high-quality image database that was specifically designed for studying human vision. The THINGS-EEG dataset provides neuroimaging recordings to a systematic collection of objects and concepts and can therefore support a wide array of research to understand visual object processing in the human brain

    Collective learning in schools described: building collective learning capacity

    Full text link
    Processes of collective learning are expected to increase the professionalism of teachers and school leaders. Little is known about the processes of collective learning which take place in schools and about the way in which those processes may be improved. This paper describes a research into processes of collective learning at three primary schools. Processes of collective learning are described which took place in small teams in these schools. It is also pointed out which attempts can be made in order to reinforce these processes in the schools mentioned
    corecore