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Abstract: Mental imagery is the ability to generate images in the mind in the absence of sensory
input. Both perceptual visual processing and internally generated imagery engage large, overlapping
networks of brain regions. However, it is unclear whether they are characterized by similar temporal
dynamics. Recent magnetoencephalography work has shown that object category information
was decodable from brain activity during mental imagery, but the timing was delayed relative to
perception. The current study builds on these findings, using electroencephalography to investigate
the dynamics of mental imagery. Sixteen participants viewed two images of the Sydney Harbour
Bridge and two images of Santa Claus. On each trial, they viewed a sequence of the four images and
were asked to imagine one of them, which was cued retroactively by its temporal location in the
sequence. Time-resolved multivariate pattern analysis was used to decode the viewed and imagined
stimuli. Although category and exemplar information was decodable for viewed stimuli, there were
no informative patterns of activity during mental imagery. The current findings suggest stimulus
complexity, task design and individual differences may influence the ability to successfully decode
imagined images. We discuss the implications of these results in the context of prior findings of
mental imagery.
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1. Introduction

Does the Mona Lisa face left or right? A common method of solving this problem is to form an
image of the Da Vinci painting in your ‘mind’s eye’. Our ability to imagine scenes and objects can help
us solve everyday problems and accomplish day-to-day tasks, such as retracing our steps to find a
lost item or navigating from a memorised map. These mentally-generated images are formed in the
absence of visual information and are instead based on short- or long-term memories [1,2]. Images
generated from memory seem anecdotally weaker, or less vivid, than those evoked by sensory input,
yet also appear to rely on the visual system [3]. In line with this, current theories of mental imagery
involve common mechanisms for human vision and mental imagery.

Recent work has revealed overlapping neural substrates for visual perception and imagery.
Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have revealed
similar patterns of brain activity during perception and imagery, suggesting computational overlap
in the neural systems responsible for each process [4–7]. This overlap is particularly clear for areas
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associated with higher-order abstract visual processing, such as visual association cortex [8–10] and
category-selective temporal cortices [11–13]. Overlapping activation is also present in low-level
visual areas, despite the absence of visual input during imagery; imagery and visual perception
both activate the lateral geniculate nucleus of the thalamus (LGN) [14] and primary visual cortex
(V1) [8,15,16]. Together, this supports the notion that imagery utilises many of the same mechanisms
as visual perception.

Despite overlapping neural activation for vision and imagery, the neural processes are not identical.
For example, there is more overlap in higher, anterior regions (i.e., frontal and parietal [4]), compared
to lower, posterior visual regions [6,15]. There are also task-related differences in imagery such
that different imagery tasks show varying degrees of overlap with vision [4,17,18]. Patients with
brain damage also provide evidence for dissociation between imagery and vision. Some patients
with occipital or parietal lesions can successfully complete tasks relying on mental imagery, despite
significant visual deficits, while others have fully functioning vision but impaired imagery [19–22].
Therefore, there is some dissociation between vision and imagery despite similar neural processing.

To date, research has focused on understanding the brain networks recruited by a variety of
imagery tasks [11,23], yet we have very little understanding of the temporal dynamics of mental
imagery. Although fMRI studies have found correlations between imagery and perception in the later
stages of visual processing [24], as well as similar activation patterns between imagery and working
memory [8], this evidence is limited by the temporal resolution of fMRI. Recent work using MEG has
revealed that while similar activation patterns are present in imagery and vision, predictable activation
patterns during imagery occur at a later time and are more diffuse than vision. This hints towards
some degree of temporal dissociation between the two seemingly similar processes [3].

Multi-Variate Pattern Analysis (MVPA) applied to neuroimaging data can elucidate the information
represented in different brain regions (fMRI) and at particular points in time (M/EEG). MVPA offers an
advantage in analysing data from mental imagery, as analyses are conducted at an individual-subject
level, and mental imagery ability is understood to vary significantly between people (e.g., [25]). MVPA
is also more sensitive to variation across fine-grained patterns and provides a powerful framework for
the detection of content-specific information [26,27]. This is particularly advantageous for imagery
signals that are likely to be weaker than visual input [28]. One recent study found that the category of
imagined images (faces and houses) was decodable from MEG recordings, albeit later than viewed
images [3]. However, decoding of individual exemplars was poor, indicating a dissociation between
low- and high-level imagery processes.

Here, we examined how the neural representation of mental images develops and changes
over time. Participants imagined one of four previously learned pictures: two faces and two places.
Each image was visually dissimilar to the other within the category, while maintaining clear category
divisions. Neural responses were measured using EEG while participants viewed the experimental
images, imagined the images, and viewed fast streams of semantically related images (i.e., other
faces and places). We expected that category information would be decodable from the EEG data
during mental imagery, that it would be broadly generalisable across the imagery period, and delayed
relative to vision [3]. We also predicted that exemplars within each category would be distinguishable
(i.e., successful within-category decoding), based on prior studies of object categorization [29] and
the known similarities between vision and mental imagery (e.g., [6]). We found that the dynamics of
imagery processes are more variable across and within participants compared to perception of physical
stimuli. Although category and exemplar information were decodable for viewed stimuli, there were
no informative patterns of activity during mental imagery.
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2. Materials and Methods

2.1. Experimental Structure

At the start of the session, participants completed the Vividness of Visual Imagery Questionnaire
(VVIQ) [30]. They were then informed of the task instructions and completed 24 imagery task training
trials. The experiment itself consisted of four blocks that were completed while EEG was measured.
In each block, participants passively viewed five rapid streams of images (Pattern Estimator), followed
by a series of imagery trials. Each imagery trial consisted of a four-image sequence (seen images),
after which participants were cued to imagine one of those stimuli (Imagery).

2.2. Participants

We recruited 16 right-handed subjects (11 male), of mean age 23 (SD = 5.58, range 18–39),
with normal or corrected-to-normal vision and no history of psychiatric or neurological disorders.
The experiment was approved by the Human Ethics Committee of the University of Sydney (approval
code 2016/849). Written, informed consent was obtained from all participants.

2.3. Behavioural Data

To measure individual variation in vividness, we administered a modified VVIQ [30] prior to EEG
set-up. The VVIQ measures subjective perception of the strength of an individual’s mental imagery.
Participants were asked to imagine 16 scenarios and rate each for vividness on a five-point Likert-like
scale. A reversed scoring system was used to decrease confusion. Participants rated each item from
1 (“No image at all, you only ‘know’ that you are thinking of an object”) to 5 (“Perfectly clear and as vivid
as normal vision”). All questions were completed twice, once with open eyes and once with closed
eyes. A final summed score between 32 and 160 was calculated for each subject; higher scores indicate
greater vividness.

2.4. Apparatus and Stimuli

Four stimuli were used in this experiment: two images of Santa and two images of the Sydney
Harbour Bridge (Figure 1A). The inclusion of two exemplars per category allowed us to disentangle
whether participants are thinking of the concept (i.e., Santa, Sydney Harbour Bridge) or generating a
specific image. These stimuli also fit into distinct face/place categories, which have been shown to
evoke robustly distinct patterns of neural activity [31,32].

All stimuli were displayed on a 1920× 1080-pixel Asus monitor on a grey background. Participants
viewed stimuli at approximately 57 cm, such that all stimuli subtended approximately 4.1 degrees
of visual angle (including a 0.15-degree black border). Responses were made using a mouse with
the right hand. A grey fixation cross was superimposed on all stimuli, with horizontal and vertical
arms subtending approximately 0.6 degrees of visual angle. Experimental presentations were coded in
MATLAB using extensions from the PsychoPhysics Toolbox [33–35].

2.5. Imagery Sequence

The experimental structure is shown in Figure 1C. Each imagery sequence began with a fixation
cross in the centre of the screen for 1000 milliseconds. The four stimuli (Figure 1A) were displayed
sequentially in the centre of the screen, within a black border. Each was displayed for 1500 milliseconds
each, in a pseudo-random order. Targets were counterbalanced such that each block contained all
24 possible sequences of the four stimuli. For each sequence, a different target was selected in each
block. Target allocation in each block was also randomised. This counterbalancing meant each image
appeared in each temporal position as a target equally often.
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Figure 1. Experimental stimuli and structure. (A) The four imagery stimuli. These four images were
displayed in every imagery sequence, in a random order, for 1500 ms each. (B) Stimuli shown in
fast sequences as part of the Pattern Estimator. (C) Imagery sequence. Participants viewed a fixation
cross for 1000 ms, followed by the four stimuli, each displayed for 1500 ms in a random order. After
another 1000 ms fixation cross, a cue (1–4) appeared on the screen, indicating the target to be imagined.
Participants clicked to advance when they were projecting a mental image into the frame. After 3000 ms,
participants were shown a response screen containing all four stimuli and flipped versions of these
stimuli and were asked to click the image they imagined. (D) Pattern Estimator. Participants viewed a
fixation cross for 1000 ms, followed by a sequence of 56 images, each displayed for 200 ms. Images
were sourced online from Creative Commons Zero License sites www.pixabay.com, www.pngimg.com
and www.pexels.com.
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The fourth stimulus was followed by a 1000 ms fixation cross, then a numerical cue appeared (1–4).
This cue referred to the target’s position in the stream; for example, ‘3′ indicated the target was the third
image in the stream. Participants were instructed to click the mouse once they had identified the target
and were mentally “projecting an image into the square”. Upon clicking, the number was replaced
with a dark grey fixation cross, and the frame was filled light grey. This ‘imagery’ screen was displayed
for 3000 ms before automatically advancing to a response screen. On the response screen, participants
were shown the four stimuli and horizontal mirror images of these stimuli. They used a mouse to
select which of these images they were imagining. Mirror images were used as distractors because
they are semantically identical but visually different, to determine if participants were using a semantic
strategy rather than an imagery-based strategy. Horizontal positioning changed across blocks (stimulus
identity), and vertical positioning was randomised every trial (mirror images/stimulus) such that for
some trials the mirror image was in the top row, and some in the bottom row. This randomisation
aimed to reduce predictability in responses.

2.6. Training

Participants completed a block of 24 practice trials of the imagery sequence before EEG recording.
We expected these training trials to give participants the opportunity to learn task structure and observe
more details about the images to facilitate vivid imagery. Training trials were similar to experimental
trials (Figure 1C). The first 12 trials contained typed instructions on how to identify the target and
went straight to the response screen after the cue, with no imagery component. On incorrect responses,
participants were shown the correct image. The second 12 trials mimicked experimental trials, with the
addition of typed instructions and feedback. Instructions displayed on the screen indicated that
participants should focus on projecting an image into the designated square. Participants were verbally
instructed to visualize the image as vividly as possible, with as much detail as they could. Participants
were given the option to repeat the training, and two did so.

2.7. Pattern Estimator

We also included a Pattern Estimator at the beginning of each block to investigate the degree
of generalisation across semantic category. Images presented during the pattern estimator were
semantically similar to the critical experimental stimuli. Participants passively viewed a rapid stream
containing the four stimuli from the imagery sequence, as well as horizontally flipped, inverted and
blurred versions of these images (Figure 1B, left). It also included other images of the Sydney Harbour
Bridge and Santa, other bridges and other people (Figure 1B, right). Each block began with five short
streams of 56 images, displayed for 200 ms each (Figure 1D). Every stream contained all 56 images
(Figure 1B) in a random order, and lasted for 11.2 s. Participants could pause between streams and
elected to advance when they were ready.

2.8. Data Recording and Processing

2.8.1. EEG Recording

EEG data were continuously recorded at 1000 Hz using a 64-channel Brain Products (GmbH,
Herrsching, Germany) ActiCAP system with active electrodes. Electrode locations corresponded to
the modified 10–10 international system for electrode placement [36], with the online reference at Cz.
Electrolyte gel kept impedances below 10 kΩ.

2.8.2. Pre-Processing EEG

EEG pre-processing was completed offline using EEGLAB [37] and ERPLAB [38]. The data
were minimally pre-processed. Data were down-sampled to 250 Hz to reduce computational load,
then filtered using a 0.1 Hz high-pass filter, and a 100 Hz low-pass filter. Line noise at 50 Hz was
removed using the CleanLine function in EEGLAB. Four types of epochs were created: Pattern
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Estimator, Vision, Cue-Locked Imagined and Response-Locked Imagined. Each epoch included 300
ms before to 1500 ms after stimulus onset. Pattern Estimator epochs were from the fast stream at the
beginning of each block, from 300 ms before each stimulus appeared, until 1500 ms after the onset.
As images were only displayed for 200 ms, these epochs also included the display of the subsequent
seven images in the stream. The Vision epochs were taken from the four images displayed in each
experimental trial and captured only one of the target stimuli per epoch. Cue-locked Imagined epochs
were centred around presentation of the numerical cue designating the target (shown immediately
after the four target images, see Figure 1C), beginning 300 ms before the cue appeared on the screen
and lasting for 1500 ms after this point. Response-Locked Imagined epochs were centred around
participants’ mouse click to begin imagery, beginning 300 ms before the mouse-click and continuing
1500 ms into the imagery period. If the response to the cue was less than 1500 ms, the Cue-Locked and
Response-Locked imagery periods would overlap. Although the period between cue and response
was variable across trials (Supplementary Figure S1), we expected the period immediately following
the cue to provide insight into the initial stages of imagery generation.

2.8.3. Decoding Analysis

All EEG analyses were performed using time-resolved decoding methods, custom-written using
CoSMoMVPA functions in MATLAB [39]. For all decoding analyses, a regularised linear discriminant
classifier (as implemented in CoSMoMVPA) was trained to differentiate brain patterns evoked by each
image or category of images.

For category decoding, a classifier was trained to distinguish images of Santa from images of
the Sydney Harbour Bridge for recordings from the same type (i.e., a classifier trained on data from
the Pattern Estimator was tested on another independent portion of the Pattern Estimator data).
To determine if exemplars were also uniquely represented, a classifier was trained to distinguish
between the two exemplars within each category (e.g., decode the two Santa images). Classifiers were
trained and tested for each time point using a 12 ms sliding time window (three time points).

To analyse data from the Pattern Estimator and Vision epochs, each presentation sequence
was treated as independent. We used a leave-one-trial-out cross-validation approach, where Vision
trials were composed of the four stimuli in each imagery sequence and Pattern Estimator trials were
composed of a single sequence containing all 56 semantically relevant images. Imagined stimuli
were analysed using a leave-two-out cross-validation approach, which took each imagery epoch as
independent and left one exemplar of each category (one Santa and one Sydney Harbour Bridge) in the
test set. Cross-decoding analyses were conducted using a leave-one-out cross-validation for imagery
and vision cross-overs to avoid auto-correlations in the signal if the epochs from the same trial are used
to train and test the classifier. All other cross-decoding used a split-half method, where a classifier was
trained on one trial type and tested on another trial type (e.g., train on all Vision trials and test on all
Cue-Locked Imagined trials). To investigate the possibility of similar processes occurring in vision
and imagery at different times, we used temporal generalisation methods [40], in which the trained
classifier for a single time point is applied to every time point in a second set of data.

To compute statistical probability for all within-type, cross-decoding and time generalisation
analyses, we used the Monte Carlo Cluster Statistics function in the CoSMoMVPA toolbox [41–43].
These statistics yielded a corrected p-value that represents the chance that the decoding accuracy could
have come from a null distribution formed from 10,000 iterations [44]. These p-values were thresholded
at pcorrected < 0.05 for significance.

3. Results

In this experiment, participants viewed rapid streams of images (Pattern Estimator) and series of
imagery trials. In imagery trials, participants were presented with a sequence of four images (Vision)
and then were cued to imagine one of the images (Imagery). We trained and tested multivariate
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classifiers to decode exemplar and category of the object in all three conditions, as well as tested the
generalisation performance of classifiers between vision and imagery trials.

3.1. Behavioural Results

3.1.1. Vividness of Visual Imagery Questionnaire

The VVIQ was scored out of 160, a sum of responses to each of the 16 questions on a five-point
scale. The VVIQ was given to participants both with eyes open and closed [30]. The average overall
score was 113 (SD = 15.93, range 82–150), similar to previously reported means [23,45,46]. Responses
with eyes open (M = 56.44, SD = 8.54) were very similar to eyes closed (M = 57.69, SD = 10.28).
The distribution of overall scores is shown in Supplementary Figure S2.

3.1.2. Target Identification

To verify if participants were able to identify the target for imagery trials correctly, we examined
their behavioural responses after each imagery sequence. Participants were able to accurately identify
the target, with an average overall accuracy of 92% (SD = 4.40). Of the trials which were errors, most
participants chose one of the four original images (67% of errors). Approximately a third of incorrect
responses were to the flipped version of the target. This suggests participants successfully learned
the basic characteristics of the target images and were not simply relying on a mnemonic strategy to
complete the task. The mean response time from cue to imagery was 3.21 s (SD = 1.86), and the most
frequent response time was between 1.5 and 2 s (Figure 2).Vision 2019, 3, x FOR PEER REVIEW 8 of 17 
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Figure 2. Frequency of response times from cue to imagery across all participants. Response time is
taken from the onset of the numerical cue indicating the location of the target in the stream, until the
participant voluntarily clicked the mouse. During this period, participants identified the correct target
and began to imagine it on the screen.
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3.2. EEG Results

Significant Decoding of Image Category and Exemplars for Seen Images on Imagery Trials

To test whether category information was represented in visually displayed images, we trained
and tested a classifier on the images seen during experimental trials (Vision). Category decoding was
continuously above chance (ps < 0.05) after 88 ms (Figure 3), indicating patterns of brain activity for
Santas and Sydney Harbour Bridges were distinguishable from this point. This above-chance decoding
was sustained for the entire time the image was displayed. Continuous above-chance decoding began
for both Santas and Sydney Harbour Bridges at 96 ms. Peak accuracy occurred at 132 ms for Santas,
124 ms for Sydney Harbour Bridges and at 196 ms for category decoding.
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Figure 3. Mean decoding accuracy for Vision (A) and Pattern Estimator (B) images. Dots below plots
indicate time points at which decoding was significantly above chance (p < 0.05). Shaded areas represent
the standard error of the mean across subjects. (A) Vision: Decoding category and exemplar identity
from the four target images presented in the experimental trials. (B) Pattern Estimator: Decoding
category and exemplar identity from the 56 images presented in the fast streams at the beginning of
each block; category decoding was based on all images in the stream classified by either face or place,
and exemplar decoding was based only on the targets and modified targets.
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3.3. Significant Category Decoding in Pattern Estimator

To create a category classification model for imagery, we looked at patterns of brain activity while
participants viewed images in the fast stream at the start of each block (Pattern Estimator). All images
were labelled according to super-ordinate categories of ‘face’ or ‘place’. To assess the model’s utility,
we cross-validated it on the Pattern Estimator trials. There was sustained above-chance category
decoding from 124 ms after stimulus onset until approximately 535 ms after stimulus onset (Figure 3).
The classifier was also able to distinguish between the two Sydney Harbour Bridge targets at several
discrete time points between 236 ms and 348 ms after stimulus onset. There was no continuous
above-chance decoding for Santas. Category decoding peaked at 404 ms after stimulus onset, at 244 ms
for Sydney Harbour Bridges and at 120 ms for Santas.

3.4. No Significant Decoding for Imagery

To determine if category or exemplar information was decodable from imagined data, we trained
and tested a classifier on the Cue- and Response-Locked Imagined epochs (Figure 4). Brain areas
activated during imagery are known to vary between individuals [25], so we looked at imagery
decoding on an individual subject basis. For each subject, we ran a permutation test in which the
decoding procedure was run 1000 times, with category labels randomly assigned to the epochs.
A p-value was calculated for each time point, based on the number of permutations with a greater
decoding accuracy than the correct label decoding. We used the False Discovery Rate to correct for
multiple comparisons. This test was conducted on both Response- and Cue-Locked epochs, and we
found decoding was not significantly above chance for any individual at any time point for either Cue-
or Response-Locked data (ps > 0.05).

To test whether there was any representational overlap in imagery and vision, we ran a cross-decoding
analysis. We ran all pairwise combinations of vision and imagery; a classifier was trained to distinguish
Santas from Harbour Bridges in the viewed stimuli (Pattern Estimator or Vision epochs) and was tested
on imagery periods (Cue-Locked or Response-Locked). There were no significant periods of overlap
for any cross-decoding involving imagined trials (ps > 0.05).

It could be that the processes in vision and imagery engage overlapping representations but at
different times. To test this, we conducted a time generalisation analysis [40]. A classifier was trained
on visual data (Pattern Estimator or Vision epochs) at each time point and then tested on imagined data
(Cue- and Response-Locked) at every possible time point. There was no time point where decoding
was significantly above chance for any combination of training and testing (all ps > 0.05), indicating
there was no point where the patterns of brain activity during perceptually processed stimuli were
present during imagery.

3.5. Differences in Vividness Did Not Affect Decoding Accuracy

Another possibility is that people with greater capacity for imagery have more decodable imagery
representations. To investigate the effects of subjective imagery vividness on decoding accuracy,
we grouped the participants as ‘high’ or ‘low’ imagery vividness based on a median split of their
‘eyes-open’ scores in the VVIQ. Two participants had the median score and were excluded from further
analysis. We used the eyes-open score because it was the most relevant for the task at hand and
makes our results comparable to prior MEG research [3], where only the eyes-open section was used.
To see if there were any significant differences between the groups in any of the previously described
analyses, we conducted a random-effects Monte Carlo statistic with 10,000 iterations to find where
differences between the groups were significantly greater than zero. There was only one isolated point
of significant differences between the two conditions, at 1484 ms, when the classifier was trained on
Pattern Estimator data and tested on Response-Locked Imagery.
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Figure 4. Mean decoding accuracy for Cue-Locked and Response-Locked Imagined epochs. The absence
of dots below the plots indicates there were no points at which decoding was significantly above
chance (ps > 0.05). Shaded areas represent the standard error of the mean across subjects. (A) Decoding
accuracy centred on presentation of the numerical cue indicating the location of the target in the
preceding stream. (B) Decoding accuracy centred on when participants clicked to advance to the
imagining period.

4. Discussion

The current study used time-series decoding to capture the precise temporal fluctuations
underlying mental imagery. Based on prior MEG evidence showing the category and identity
of imagined objects can be decoded, we expected successful category and exemplar decoding from
imagery. However, contrary to our predictions, we were unable to detect any systematic representations
of category or exemplar information during imagery. Based on previous evidence that imagery recruits
similar neural networks to vision [4], we also anticipated overlapping patterns of neural activity
when participants were viewing and imagining the same image. Although we were able to decode



Vision 2019, 3, 53 11 of 16

stimulus category and identity from visually processed stimuli, there were no time points where neural
representations of vision and imagery were overlapping. Finally, we considered whether individual
subject results might vary based on imagery vividness and found no systematic differences between
subjects reporting high and low vividness. Overall, our findings suggest stimulus- and design-related
factors may influence the chances of successfully decoding mental imagery.

To compare the overlap between imagery and visual processing, we first defined the temporal
dynamics of visual processing for the images in this experiment. For stimuli presented as part of
the imagery sequence (Vision), image category was predictable from approximately 100 ms after
stimulus presentation until offset 1400 ms later. Exemplar decoding was also significant from 100 ms,
albeit for less continuous time than category decoding, reflecting well-established evidence that both
categories and exemplars evoke distinct patterns of brain activity [47]. For the Pattern Estimator,
category decoding was significantly higher than chance from 100 ms until approximately 500 ms after
stimulus onset. This extended period of decoding after stimulus offset supports recent evidence that
multiple representations can co-exist in the brain [48,49].

In both visual conditions, exemplar decoding peaked earlier than category decoding. This reflects
well-established evidence of increasing abstraction along the ventral visual pathway [47,50]. It also
appears that decoding accuracy for Sydney Harbour Bridges is higher than for Santas, for both visual
conditions (Vision and Pattern Estimator), though this pattern is less defined for the Pattern Estimator
stimuli because of the low numbers of training and testing stimuli (4 of each exemplar per stream).

When the classifier trained on the visual stimuli was tested on imagery, there were no time points
where the signal was sufficiently similar to accurately predict image category or identity. To investigate
the possibility that the processes were not temporally aligned, we conducted a temporal generalisation
analysis. There were no regular patterns of activity at the group level, indicating there was no overlap
in representations at any point in the imagery period. Based on evidence that areas of activation
during imagery vary across people (e.g., [25]), we examined results on the individual level. Patterns of
individual decoding accuracy varied dramatically between subjects. Neither category nor exemplar
decoding was significant at any time point for any individual. At face value, these results seem
inconsistent with prior findings by Dijkstra and colleagues [3]. These differences primarily point to the
difficulties of studying visual mental imagery, and the specific methodological characteristics required
to obtain significant imagery decoding.

Several factors may have impacted our capacity to decode imagined mental representations,
including decreased power compared to previous experiments and other methodological concerns.
For example, it is possible that some aspects of the experimental design, such as the mouse-click,
and the working memory requirements of four images, decreased the similarities between vision
and imagery. However, a recent experiment used similar design choices and found that animacy
information was available before information about visual features for perception, but this was in the
reverse order for retrieval from memory [51]. Participants in the study used a mouse-click in a similar
fashion to those in our study, indicating that this aspect of the design was not responsible for our
null effects. Furthermore, it seems unlikely that working memory demands influenced our ability to
decode imagery, because Linde-Domingo et al. [51] had arguably higher demands on working memory
(eight word-image associations per block). One factor that might have influenced our ability to decode
information during imagery, however, is the density of channels; most prior experiments use a greater
number of channels than the 64 we had (128 EEG channels in [51] and 256 MEG channels in Dijkstra et
al. (2018) [3]). This increased number of channels may provide better signal to noise ratio and increase
chances of finding an effect [52]. An additional consideration is that individual variability in image
generation would reduce the sensitivity of population statistics. Moreover, the temporal variability in
an individual’s capacity to generate a mental image would further reduce individual effect sizes, as
differences over time blur the signal.

We designed our experiment to check if participants used non-imagery-based strategies, to rule
this out as a reason for significant decoding. We tested if participants were using a non-imagery strategy
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by including a superordinate category distinction with two exemplars in each category. We obtained
response data after every trial with flipped images as distractors to test whether participants were
using an imagery-based strategy. If participants were using a purely semantic label-based strategy, we
would expect a similar number of responses for flipped and target images. However, only 0.33% of all
responses were the flipped version of the target. These response patterns clearly show participants
in our experiment were aware of the visual elements of the images rather than solely the semantic
label. Due to the fundamentally introspective nature of mental imagery, there is no way to determine
if participants are genuinely completing the imagery portion of the task. However, these response
patterns point strongly to the use of an imagery-based strategy. Future experiments with similar
hierarchical structure and more subtly modified response options (e.g., deleting or rotating a single
element of the image, or changing colours of elements of the target images) could help determine
whether this is a plausible theoretical explanation for our results.

Generation of mental imagery requires activation of complex, distributed systems [4]. Higher
stimulus complexity increases the number of details that need to be recalled from memory. It therefore
seems likely that the neural processes involved in viewing a static image are more temporally consistent
than generating an image from memory, which is unlikely to follow a millisecond-aligned time-locked
process. This is particularly apparent for complex stimuli which require more details, stored in
potentially disparate locations, to generate vivid imagery. This same temporal blurring between trials
from temporally misaligned processes is present in other prior studies [3], as it is somewhat inherent
to the temporal specificity that decoding of time-series data provides.

Most previous experiments using complex visual scenes as imagery targets use an extensive
training period prior to the study, relying on long-term memories of targets for imagery [28]. Although
our participants completed a training period prior to EEG recording, slightly longer than those in
Dijkstra and colleagues’ MEG study, it is possible [3] that participants might have experienced more
vivid imagery if they had more exposure to the experimental images. Intuitively, it seems easier to
imagine a highly familiar object such as an apple rather than a scene of Sydney Harbour because there
are fewer details required to create an accurate representation. Mental images that are less vivid or less
detailed are likely to generate weaker neural activation [53] and are less likely to fully resemble the
details that are processed during vision. If the patterns are less distinct, a classifier is less likely to be
able to identify reliable patterns of brain activity on which to base categorisation. To determine the
effects of memory on imagery vividness and reliability, future study could compare the current results
to a similar paradigm where subjects have extensive training prior to recording (e.g., participants are
extensively questioned about characteristics of the image, or have to draw the main aspects to show
awareness of details in the image).

As highlighted in recent research [54], individual differences in imagery generate increased
variation between individuals. Pearson and Keogh (2019) provide a compelling argument for
individual differences in strategy causing differences in imagery results. For example, only the visual
working memory of ‘good imagers’ was affected by a manipulation of brightness (to interfere with
low-level visual representations), indicating that only some participants were using imagery as a
memory strategy [55,56].

In the current experiment, differences in visual working memory capacity, personal decision-making
boundary, and memory strategy may have increased variation between participants. For example,
individuals who report stronger imagery ability tend to use an imagery-based strategy on visual working
memory tasks [57]. Features of both working memory and long-term memory (e.g., meaningfulness,
familiarity) affect ratings of imagery vividness [58]. Furthermore, differences in strategy may also
cause variation between individuals. These factors might also influence variability within a participant;
increasing exposure to the four images might change neural responses over the course of the experiment
as the participant recognises and remembers more image details.

Another source of variation may be the possibility that we captured a slightly different stage
of imagery across individuals, as it is likely each person based the timing of their mouse clicks on a
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different threshold criterion for the point at which they had begun to imagine. Different strategies for
identifying the target may have directed the focus of imagery. When asked informally at the conclusion
of the experiment, all participants could explicitly describe their strategy for identifying the target.
Most participants assigned a label to each image and mentally repeated these to remember the image
order. The majority of strategies relied on structural characteristics, for example, “fat, tall, under,
above”. Several participants also reported a direction-based strategy, for example, “top, bottom, centre,
side” or “straight, side, face, body”, indicating the orientation of the main object in the image. Though
there is no reliable way to compare decoding accuracy based on strategy, different strategies may direct
focus on different aspects of the complex images (e.g., thinking of ‘face’ might make facial features
salient, compared to labelling the same image as ‘fat’, drawing focus to body shape). These differences
in strategy present another potential source of variation between subjects.

It is clear that capability to decode visual mental imagery is influenced by several factors, including
vividness, memory and stimulus complexity. These factors do not affect imagery in isolation; they are
inherently related. Better memory for the details of an image is likely to increase vividness. The number
of details remembered by an individual is influenced not only by their memory capacity but also by
the complexity of the stimulus and the number of details necessary to generate a vivid image. All
these factors create variation in the processes used to generate mental imagery across both people and
time [3,59]. The potential for MVPA techniques to analyse data at the individual level provides insight
into the variation across subjects and highlights the need for future studies to consider patterns of data
at an individual level to maximise the chances of obtaining clear signals from imagery.

5. Conclusions

In this study, we investigated how neural representations of mental imagery change over time.
Our results suggest successful category decoding in earlier studies may be a result of better signal to
noise ratio from a variety of factors, including individual variation. Variety in response times, imagery
strategy and ability, in addition to fewer recording sensors may have reduced our power to find
systematic patterns of neural activity during imagery. Furthermore, the interactions between stimulus
complexity, working memory and imagery vividness may have increased this variation. Our results
raise many questions for further investigation and demonstrate both the challenges and advantages
associated with time-series decoding for EEG in investigating the introspective processes underlying
mental imagery.
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