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ABSTRACT

Neuroimaging studies investigating human object recognition have primarily focused on a relatively small number of object categories, in particular, faces, bodies,
scenes, and vehicles. More recent studies have taken a broader focus, investigating hypothesized dichotomies, for example, animate versus inanimate, and continuous
feature dimensions, such as biologically similarity. These studies typically have used stimuli that are identified as animate or inanimate, neglecting objects that may
not fit into this dichotomy. We generated a novel stimulus set including standard objects and objects that blur the animate-inanimate dichotomy, for example, robots
and toy animals. We used MEG time-series decoding to study the brain’s emerging representation of these objects. Our analysis examined contemporary models of
object coding such as dichotomous animacy, as well as several new higher order models that take into account an object’s capacity for agency (i.e. its ability to move
voluntarily) and capacity to experience the world. We show that early (0-200 ms) responses are predicted by the stimulus shape, assessed using a retinotopic model
and shape similarity computed from human judgments. Thereafter, higher order models of agency/experience provided a better explanation of the brain’s repre-
sentation of the stimuli. Strikingly, a model of human similarity provided the best account for the brain’s representation after an initial perceptual processing phase.

Our findings provide evidence for a new dimension of object coding in the human brain — one that has a “human-centric” focus.

1. Introduction

Human object recognition is fast, efficient (Thorpe et al., 1996) — and
fundamental to our interactions with the world. The ventral temporal
cortex (VTC) is widely accepted as a key structure for visual object
perception (Caramazza and Shelton, 1998; Haxby et al., 2001; Ishai et al.,
1999; Mahon et al., 2007). One hypothesized organisational principle in
human and primate VTC is the animate-inanimate dichotomy (Kiani
et al., 2007; Kriegeskorte et al., 2008a,b; Pinsk et al., 2009). In support of
this view, neuroimaging studies have shown subregions of the VTC with
distinct response preferences, including a medial to lateral organization
of animate and inanimate objects in the brain (Chao et al., 1999;
Kanwisher et al., 1997; Konkle and Caramazza, 2013; Mahon et al., 2007;
Taylor and Downing, 2011). It is also well known that specific regions
within VTC respond preferentially to images from particular categories,
including faces, animals, bodies (Downing et al., 2006; Downing et al.,
2001; Haxby et al., 1994; Puce et al., 1996; Sergent et al., 1992), tools
(Chao et al., 1999; Chao and Martin, 2000) and places (Epstein et al.,
1999; Epstein and Kanwisher, 1998; Taylor and Downing, 2011).

An alternative approach to understanding object representations in the
brain is to study how objects are represented in distributed patterns of

brain activity (Haxby et al., 2001; Ishai et al., 1999). Using multivariate
pattern analysis (MVPA) (for reviews see Grootswagers et al., 2017;
Haynes, 2015; Pereira et al., 2009), researchers can study patterns of brain
activity and test hypotheses about the neural representation of object
categories (Kriegeskorte and Kievit, 2013; Kriegeskorte et al., 2008a,b).
Using the MVPA framework, studies examining the relative similar-
ity/dissimilarity of individual object representations in VTC have evi-
denced that objects may be represented along continuous dimensions in a
multidimensional representation space. Animate subcategories have been
argued to be coded along an axis of biologically similarity to humans
(Connolly et al., 2012; Sha et al., 2015). This animacy continuum, how-
ever, does not provide a clear prediction for subcategory differentiation
within the inanimate domain, nor for how the brain would represent ob-
jects that blur the animate-inanimate distinction (e.g., robots and animal
toys). Early fMRI studies have shown that stick figures bodies and cartoon
faces activate the extrastriate body area (EBA) and the fusiform face area
(FFA) (Downing et al., 2001; Kanwisher et al., 1997; Tong et al., 2000),
respectively. On the one hand, one would expect the EBA and FFA to
respond to the figures because in a minimalist form they convey infor-
mation about category membership. On the other hand, observers clearly
know these figures are not alive. Moreover, it is also unclear whether a
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continuum centred around ‘animacy’ best captures the dimension along
which neural responses vary. Sha et al. (2015), for example, proposed that
the neural representation of objects is better characterised according to the
object’s ability to perform goal-directed actions (see also Haxby et al.,
2020; Thorat et al., 2019). Critically, there are many related factors to
biologically similarity and agency that are known to influence human
perception of objects (Gobbini et al., 2011; Gray et al., 2007). This raises
the question about whether these factors also might be used as organisa-
tional principles for the brain’s representation of objects.

In the present study, we used magnetoencephalography (MEG) to
characterise the brain’s neural representations of objects, and to explore
their temporal dynamics. We studied the brain’s emerging representation
of 120 object stimuli and tested a wide range of models that might ac-
count for these representations using representational similarity analysis
(RSA) (Kriegeskorte and Kievit, 2013; Kriegeskorte et al., 2008a,b). We
found that, after an initial period of perceptual processing, higher order
category models and models of agency and human-related experiences
account for brain’s representations of these objects. Notably, the model
that best accounted for later stage representations of objects was a
“human-centric” model, which describes objects in terms of their simi-
larity to humans.

2. Materials and methods
2.1. Data Availability

Data from these experiments are freely available for download from
the Open Science Framework (doi: https://doi.org/10.17605/0SF.10/
A52VT). This online repository includes deidentified raw data from the
MEG and behavioural experiments, all stimuli used in the experiments,

and the Matlab code used to perform all analyses and generate each
figure in this manuscript.

2.2. Participants

Twenty-four English-speaking volunteers (18 female) with an average
age of 24.7 years (SD = 5.47; range = 18-37) were recruited from the
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Macquarie University community. Informed written consent was ob-
tained prior to participation, and participants were financially compen-
sated for their time. All participants self-reported normal or corrected-to-
normal vision (wearing of contacts was allowed), were free of medical
conditions, and were not currently taking any neuroactive medications.
This study was approved by the Macquarie University Human Research
Ethics Committee.

2.3. Stimuli

Stimuli consisted of 120 naturalistic images of objects (Fig. 1),
which were displayed on a uniform grey background. Twelve object
categories were used in the study: six animate (humans, primates, do-
mestic animals, birds, fish, invertebrates) and six inanimate (plants,
robots, machines, tools, toys, other non-moving objects). In this stim-
ulus set, animate is defined as living animals, in line with previous
research (Caramazza and Shelton, 1998; Carlson et al., 2013; Connolly
etal., 2012; Gobbini et al., 2011; Kriegeskorte et al., 2008a,b; Sha et al.,
2015). Categories were selected to include ones similar to those used by
Sha et al. (2015), with the addition of robots and toys to address the
questions about agency and experience. We also included machines,
which, like robots, had moving parts, but did not have the human-
istic/animalistic/agentic properties. Stationary objects were also
included, which neither moved nor had humanistic/animalistic/agentic
properties.

2.4. MEG experimental procedure

For the experimental task, participants completed eight blocks of 398
trials (3184 trials in total). Within each block exemplars were presented
for 100 ms, with a random inter-trial interval ranging between 750 and
1000 ms. The eight blocks were collected in a single session totalling
approximately 1 h of MEG recording time. Stimuli were presented in a
predetermined pseudo-randomised order, such that for each trial, the
preceding image had an equal probability of being from any one of the 12
object categories. The ordering of the 8 blocks was pseudo-randomised
across participants.
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Fig. 1. Stimuli from each of the 12 object categories. Animate object categories are ordered vertically according to the biological classes animacy continuum (Sha
et al., 2015). Brackets show two examples of different groupings of the stimuli: living vs. non-living and animate vs. inanimate.
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Across trials, object images were manipulated in two ways to reduce
the effects of low-level stimulus properties on our data. Firstly, a left-right
flipped version of each image was included in the stimulus set, resulting
in a total of 240 stimuli from 120 object images. Secondly, during image
presentation, stimuli appeared in one of four locations while participants
maintained fixation on a central marker, thus varying retinal location of
the stimulus images. The four locations were defined by a shift from
central presentation towards each of the four corners of the screen, where
each stimulus location overlapped the central fixation point (details in
Display Apparatus below). Each stimulus was presented three times at
each location. This resulted in a total of 2880 trials (240 stimuli x 4 lo-
cations x 3 repetitions = 2880 trials). The additional trials were not
included in the analysis: these included the first and last trial of each
block, as well as 288 repeat trials that were added for the attention task
(see below).

2.5. Attention task

During the experiment, participants completed a one-back attention
task, where they were required to press a button whenever an object
image was repeated consecutively. Participants received feedback about
their accuracy on the task at the completion of each block. The mean
accuracy across participants was 87.38% (SD = 7.28%), with an average
reaction time of 535 ms (SD = 51 ms). Due to a malfunction of the
response button during the experiment, accuracy and reaction times were
missing for one of our 24 participants, as well as for one out of the eight
blocks for each of two further participants. These participants were still
instructed to perform the task and were unaware that the button was not
recording their responses.

2.6. Display Apparatus

Participants lay supine in the magnetically shielded recording room.
Using an InFocus IN5108 projector situated outside the chamber, stimuli
were projected onto a mirror, which reflected the image onto the ceiling,
located approximately 113 cm above the participant. The total screen
area was 20 x 15 degrees of visual angle (DVA). Throughout the
experiment the screen background was held at a mean grey, and subjects
were instructed to fixate on a black central fixation point (diameter of 0.1
DVA) that was always present. All stimulus locations were within a 6.9
DVA square, centred on the fixation point. Each stimulus consisted of a
256 x 256 pixel image (containing the segmented colour object) that was
drawn to a 4.9 x 4.9 DVA square. Stimuli were presented one at a time, in
one of four locations aligned with the upper left, upper right, lower left,
or lower right corner of the 6.9 DVA square. A central square of 150
pixels (2.9 DVA) was common to all four stimulus locations. All stimuli
were drawn as full colour segmented objects against a mean grey back-
ground (as in Fig. 1): the same mean grey as the screen outside the
stimulus location. Upon stimulus presentation, a 50 x 50 pixel (1 x 1
DVA) white square simultaneously appeared in the bottom right corner of
the projection, which was aligned with a photodetector attached to the
mirror to accurately record the stimulus presentation time in the MEG
recording. The experiment was run on a Dell PC desktop computer using
MATLAB software (Natick, MA) and the Psychophysics Toolbox exten-
sions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

2.7. MEG data acquisition

MEG data were recorded in the KIT-Macquarie Brain Research Lab-
oratory using a 160-channel whole-head axial gradiometer (KIT, Kana-
zawa, Japan). Continuous data were acquired at a sampling rate of 1000
Hz, and were band-pass-filtered online from 0.03 to 200 Hz. MATLAB
(2013b, Natick, MA) was used for all processing and statistical analyses
of the data. Offline, we down-sampled the data to 200 Hz and epoched
each trial into an event with a time window from —100 ms to 600 ms
relative to stimulus onset. To reduce the dimensionality of the data, we
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applied Principal Components Analysis to the epoched data from the 160
gradiometers and retained the first n components that accounted for 99%
of the variance. The number of components retained for each participant
ranged from 14 to 72 (Mean = 34.21, SD = 18.90).

2.8. Classification analysis

For each participant, we used linear discriminant analysis to classify
object/exemplar identity at the single trial level, training and testing
classifiers on their ability to discriminate every possible exemplar pair of
the 120 object images. We used cross-validated classification accuracy as
a measure of how dissimilar the patterns of brain activity were for one
exemplar compared to another (Nili et al., 2014). We did not attempt to
model the effects of spatial position or left-right flip in our classification
analysis, but instead used a single data label (the object identity) for data
obtained from both the standard and left-right-flipped versions of the
stimuli, as well as all four stimulus presentation locations. By including
data from all variations of the stimuli, we sought to force the classifier to
generalise beyond lower-level visual features, (such as the presence or
absence of stimulation at a given location in the visual field), and instead
use any neural correlate of object identity. These modifications to the
stimulus presentation would have introduced extra noise into the signal
across trials, so would tend to reduce classifier performance relative to
unvarying stimuli, but they allowed us to better target higher-level object
representations. For each time-point, we trained and tested a separate
classifier to discriminate each pair of exemplar identities from the PCA
components. We used a 10-fold cross-validation procedure, where the
classifier was trained on data from 90% of the trials and then its accuracy
was evaluated using its performance when classifying the remaining 10%
of the data, so that the classifier was never tested on data that were
included in the training set. This process was repeated 10 times, so that
all trials were used as test data once each. D-prime (d’) was used as the
metric for classification accuracy.

2.9. Representational similarity analysis (RSA)

Classifier accuracies (d’) were averaged across exemplar pairs to
obtain the mean classifier performance for each time point. Additionally,
to capture the pattern of classifier performance across exemplar pairs and
compare this pattern with model predictions, we constructed a Repre-
sentational Dissimilarity Matrix (RDM) for each time point. The RDM is a
120 x 120 matrix, symmetric along the diagonal, where each cell is the
classification accuracy (d’) for that pair of exemplars.

For each time point we compared each participants’ observed neural
RDM with model RDMs, where each model RDM was a 120 x 120 matrix
derived from theory, computational modelling, or behavioural data (as
described in detail below). This analysis, known as ‘Representational
Similarity Analysis’ (RSA) (Kriegeskorte et al., 2008a,b) tests the rela-
tionship between models of interest and the group data, measuring how
well the model RDMs account for the observed pattern of results. At each
time point we used Kendall’s tau-a to compute the rank order correlation
between each candidate model and the neural data, then used these
correlation values to compare candidate models in their ability to ac-
count for the neural data. Fig. 2 shows the model RDMs, which are
described in detail below.

2.10. Low-level feature models (Fig. 2, models 1-3)

The HMAX and Jaccard silhouette models were included to test for
the effects of low-level stimulus properties on the similarity/dissimilarity
of neural responses, as measured using classifier performance.

HMAX (model 1): Computational model of low-level visual processes.
We applied the HMAX model (Riesenhuber and Poggio, 1999; Serre et al.,
2007) to simulate the responses of low-level visual areas. HMAX was
applied to images at only a single image location and based on the
standard orientation of each stimulus (i.e., not left-right flipped). The
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Fig. 2. Representational Similarity Analysis. (A). For all pairs of images, the dissimilarity between their MEG response patterns is stored in a Representational
Dissimilarity Matrix (RDM). An RDM is created for each time point from the MEG data. (B-D) RDMs used for model testing. Model axes refer to all 120 image ex-
emplars (grouped by category in the same order as Fig. 2A. Colour bar indicates predicted degree of dissimilarity between exemplar pairs. Models are grouped ac-
cording to whether they are low-level feature models (B), contemporary models (C), or behavioural rating models (D). (E) Model correlation matrix. Cell colour
indicates correlation strength (*p < .05, adjusted for multiple comparisons across model pairs using a FDR of q < 0.01), with yellow cells indicating a stronger
correlation between models, while blue indicates a weak/no correlation. (F) MDS plot showing the representational geometry of model similarity in a 2-dimensional
space. Models are colour coded according to whether they are low-level feature models, contemporary models, or behavioural rating models.
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responses of the final HMAX layer (C2) for every stimulus were vector-
ized. We then generated the model RDM by taking the Euclidean distance
between the vectorized model responses for each pair of stimuli.

Jaccard (silhouette model; model 2): An abstract shape model that
measures the shape of each object in terms of the pixels that the image
occupies (Jaccard, 1901). We generated the model RDM by comparing
the overlapping silhouette regions of two images at a time and obtaining
a measure of the difference. This model was generated based on the
standard orientation of each stimulus (i.e., not flipped), independent of
location.

Shape-similarity model (model 3): The shape similarity model was
constructed using a visual search (Proklova et al., 2016, 2019). In short,
shape dissimilarity was measured as the time it took participants to find a
unique shape among identical distractor shapes in a visual search para-
digm. For every pair of stimuli, we extracted the outline of the two ob-
jects and presented them on a 4 x 4 arrangement. The location of the
oddball was randomly chosen on each trial. Participants responded
whether the unique shape was on the left side or right side of the display
using a key press (F and J for left and right). Each arrangement was
preceded by a 500 ms fixation cross, and the arrangements remained on
the screen until the participants responded. All combinations of stimuli
were divided in 15 sets of 953 trials each, and 20 unique participants
completed each set. A total of 300 Amazon’s Mechanical Turk workers
residing in either the United States of America or Canada, completed the
experiment. The group had a mean accuracy of 0.8995 (s.d. 0.1673).
Individual participant’s reaction times were z-scored and then
sign-flipped, and we then constructed the shape model by taking the
median z-scored reaction times on correct trials for each pair of stimuli
across participants.

2.11. Contemporary models of object representations (Fig. 2, models
4-10)

The contemporary models were created based on organisational
structures proposed in previous studies, with the term ‘contemporary’
used to highlight that these reflect current theories of object category
structure. Descriptions of each model are provided below.

Dichotomy models (models 4 and 6): The animate vs. inanimate di-
chotomy model (Caramazza and Shelton, 1998; Carlson et al., 2013;
Cichy et al., 2014; Kriegeskorte et al., 2008a,b) is a category model that
grouped all animate and inanimate objects separately (implying that
objects within these groupings were more similar to each other, and more
dissimilar to objects in the other grouping). Similarly, the living vs.
non-living dichotomy model (Gainotti, 2000; Huth et al., 2012; War-
rington and Shallice, 1984) grouped all living and non-living objects
separately. The living category included the same items as the animate
category but with the addition of plants.

Cluster models (5 and 7): The animal cluster model (model 5) is a
single-category model that only grouped all animate objects together,
suggesting that animate objects will be more similar to each other, and
more dissimilar to all other objects, but that inanimate objects will not
cluster. The living cluster model (model 7) follows the same principle,
but grouping all living objects together. The cluster models were created
to determine whether the effect of the dichotomy models was driven by
cohesion within the in-group alone (i.e., animate, living), with more
disparate object representations in the out-group category (i.e., inani-
mate, non-living) (Clarke and Tyler, 2014).

Category model (model 8): The category model was included as a
measure of category individuation, as it proposes that items within in-
dividual categories have distinctly related patterns due to common visual
and semantic properties, and these patterns are more different to those of
objects from other categories (Clarke and Tyler, 2014). This model
grouped each individual category as being more similar to
within-category items and more dissimilar to other categories.

Faces/bodies model (model 9): Faces and bodies stand out as special
categories for object recognition (Barragan-Jason et al., 2015; Cauchoix
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et al.,, 2014; Gobbini et al.,, 2011; Haxby et al., 2001; van de Nieu-
wenhuijzen et al., 2013) and so were of interest given the inclusion of
toys and robots in our stimulus set. As such, the faces/bodies model is
single-category model, grouping together all object categories that had
faces or bodies, including all animate objects, as well as robots and toys.

Continuum model (model 10): The continuum model is a graded model
based on the animacy continuum proposed by Sha et al. (2015). The
continuum included a gradient of similarity between object categories
that varied along a dimension related to biological classes, such that
categories more similar to humans (biologically), would have more
similar activity patterns, and those more dissimilar to humans would
have activity patterns more similar to inanimate objects. For this model,
plants were included on the continuum as they are a biological category
and were represented on the continuum between invertebrates and
inanimate objects. All non-living inanimate objects were treated as a
single category, most dissimilar to the human category.

2.12. Behavioural-rating models for agency/experience models (Fig. 2,
models 11-18)

The behavioural-rating models include the agency/experience
models (models 11-17) and the human model (model 18). These models
were created by obtaining behavioural ratings of the stimuli according to
a specific question (detailed below). A total of 325 Amazon’s Mechanical
Turk workers residing in either the United States of America or Canada,
completed one of the eight surveys online (number of participants per
survey ranged from 40 to 43). Participants included 146 females (1 other,
1 no response), and had an average age of 35.27 years (SD = 10.26,
range = 18.9-70.8; one age value missing). In each survey we asked
workers to answer a single question for each of the stimuli:

11. Fear - How much is it capable of feeling afraid or fearful?

12. Pleasure — How much is it capable of experiencing physical or
emotional pleasure?

13. Desire - How much is it capable of longing or hoping for things?

14. Consciousness - How much is it capable of having experiences and
being aware of things?

15. Thought - How much is it capable of thinking?

16. Emotion-recognition - How much is it capable of understanding how
others are feeling?

17. Self-Control - How much is it capable of exercising self-restraint
over desires, emotions or impulses?

18. Human - How similar is this to a human?

Surveys for models 11-17 were based on a subset of the mental ca-
pacity surveys used in Gray et al. (2007), which vary as to how much they
loaded onto the author’s ‘Experience’ and ‘Agency’ factors that were
established in their study. The seven agency/experience models were
based on the results of these surveys. The ‘Human’ survey (18) was added
to address a meta-representational idea of categorisation, that of “hu-
man-ness”: a complex factor which may encompass biology, agency, and
visual similarity. Each survey required participants to rate all 120 images
on a 7-point scale from ‘Not at all’ to ‘Very much so’ in response to the
specific question. Each survey took approximately 10 min to complete
and participants were financially compensated for their time. The sur-
veys were created and administered using the Qualtrics online survey
platform. For each survey, participants provided voluntary consent and
basic demographic information before completing the survey. Partici-
pants were only allowed to complete one of the eight surveys available,
resulting in unique individuals for each survey. Stimulus order was
randomised separately for each participant.

To construct the models based on agency and experience (shown in
Fig. 2), a RDM was created for each set of survey responses by obtaining
the absolute difference between image ratings for each pairwise com-
parison of the 120 images, using the mean ratings of each image. These
RDMs, based on the survey ratings, provide hypothetical models of the
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degree of dissimilarity between the neural responses associated with
each image. For graphical purposes, we scaled these difference values
between 0 and 1 for each model, such that warmer colours indicate
greater dissimilarity, while cooler colours depict greater similarity be-
tween the neural representations in the pair-wise comparison.

2.13. Model intercorrelations (Fig. 2E)

As the models we used in this study were not orthogonal, we
measured the degree of overlap by performing correlations (Spearman)
between each of the models (see Fig. 2E). By evaluating the strength of
these correlations, we obtained an estimate of how much the models
overlap in terms of the hypotheses being tested. Of particular note, the
behavioural-rating models based on the agency and experience factors
from Gray et al. (2007) and the human model we created were all highly
correlated (see clustering in Fig. 2F MDS plot of the representational
geometry): this was not surprising as these models all capture slightly
different aspects of similarity to humans.

In this study, we aimed to select stimuli that were visually diverse
within each subcategory, to minimise the extent to which visual simi-
larity would produce seemingly ‘categorical’ patterns of results. The
model correlation data suggests that our stimulus set provided good
separation of visual similarity and object category, since few models
correlated with the visual feature models. Importantly, this should
minimise the contribution of low-level visual similarity when we eval-
uate our hypothesis driven models. Exceptions to this included the ani-
mal cluster, category, and faces/bodies models, which each showed a
significant correlation with one, or both of the HMAX and Jaccard
models. This suggests that despite our stimulus diversity, there was still
greater visual homogeneity of exemplars within the category groupings
in these models than between category groupings. This means that,
particularly for the animal cluster, category, and faces/bodies models,
any correlation between these models and the observed pattern of clas-
sifier performance could be driven by low-level visual similarity rather
than by the higher-level category structure represented by these models.

2.14. Statistical evaluation of models

For each participant, we computed the correlation between each
model and the time varying RDMs constructed from their MEG data. The
time varying model correlations (Fig. 3) were compared against zero
using sign-rank tests, and the resulting p-values were FDR-corrected for
time points at ¢ = 0.01. For the time windowed analysis (Fig. 4), the
model correlations were tested against each other at each time window
using t-tests, and the resulting p-values were FDR-corrected (across all
model comparisons) for at ¢ = 0.01. The FDR correction was done
separately for the three time windows.

3. Results
3.1. Decoding object exemplars from the MEG recordings

We scanned participants using MEG while they viewed 120 object
stimuli and applied multivariate pattern analysis to the MEG sensor re-
cordings at each time point, measuring how well the classifiers could
decode the stimulus the participants were viewing. To study the brain’s
representation of the objects at each time point, we ran the decoding
analysis for all possible pairwise combinations of the 120 object stimuli.
These data were used to create time-varying RDMs identical in size to
model RDMs (Fig. 2).

We first confirmed we could decode the objects from the MEG re-
cordings. Fig. 3A shows the average performance of the classifier across
all the pairwise combinations of objects. The results show sustained
decoding of object exemplars from 50 ms post stimulus-onset to the end
of the time window (600 ms) with peak decoding performance at
approximately 105 ms post stimulus onset. These results are consistent
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with previous MEG decoding studies examining the emerging represen-
tation of objects in humans (Carlson et al., 2013; Cichy et al., 2014;
Goddard et al., 2016).

3.2. The dynamic representation of objects

How does the brain’s representation of objects unfold over time?
Having established that we could decode the individual object images,
we next tested a range of hypotheses about category representations by
comparing the observed neural RDMs with the model RDMs at each time
point, using RSA (Kriegeskorte and Kievit, 2013; Kriegeskorte et al.,
2008a,b). The neural RDM at each time point describes the brain’s rep-
resentation of the stimuli at that time. The models (Fig. 2B-D) attempt to
explain a proportion of the variance in this structure. Formally, the
models were evaluated by computing the rank correlation between the
neural RDMs and each model RDM (Fig. 3B and C).

3.3. Low-level models and shape similarity (Fig. 3B)

We evaluated two low-level models and one high level shape simi-
larity model. The low-level models were designed to test how primitive
visual features account for the brain’s representation of the stimuli. The
Jaccard (i.e., silhouette) model evaluates differences in the retinal pro-
jection of the stimuli (Jaccard, 1901). The HMAX model is based on a
simulation of the response of early visual areas (Serre et al., 2007). The
Jaccard and HMAX models both were significantly correlated with the
neural RDMs during early stages in the time course, peaking at 75 and
105 ms respectively, and were no longer significant predictors after 250
ms. This is in agreement with the established literature about the
time-course of visual object recognition, with responses related to
lower-level visual stimulus properties occurring earlier on, and more
abstract semantic and categorical responses occurring later (Carlson
et al., 2014; Carlson et al., 2013; Cichy et al., 2014; Clarke and Tyler,
2014). Note that the models show high correlations even though our
design incorporated left-right flips of the images and spatial displacement
of the images to reduce the influence of low-level stimulus properties.
The low-level models were generated using only the standard orientation
of each stimulus at a fixed position, yet could still predict the data after
these transformations, affirming the importance of low-level visual
similarity in the initial representation of the stimuli. We additionally
tested a high level shape similarity model based on human behaviour
(Proklova et al., 2016, 2019). This model notably should not be as
influenced by retinotopic factors (i.e. left-right flips of the images and
spatial displacement), as it is based on observers’ global perception
shape. The shape similarity model peaked at 115 ms and was significant
for much of the time period. This result affirms previous studies showing
shape similarity provides a good account of the brain’s early represen-
tation of the stimuli (Proklova et al., 2016, 2019). It is also notable that
the shape similarity model peaked later than the two other low-level
models, which accords with the view the higher order visual areas dis-
count retinotopic differences in the emerging representation visual ob-
jects (DiCarlo et al., 2012).

3.4. Contemporary models: intermediate processing emphasizes faces and
bodies (and shape similarity)

A wide range of theoretical models have been proposed to account
for the brain’s higher-order representation of objects. We tested how
many of these models could account for the brain’s emerging repre-
sentation of the objects (Fig. 3B-D). The models we tested included a
range of categorical models (e.g., animate versus inanimate), as well as
a biological continuum model (Sha et al., 2015). We assessed their
explanatory power using RSA and found that the models produced
varying results. Of these models, starting at approximately 100 ms, the
face/body category model had the most explanatory power. Notably,
the shape model from human judgments followed a similar trajectory to
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Fig. 4. Model correlations (Kendall’s tau-a) in the early (0-100 ms; A), middle (100-200 ms; B) and late (200-300 ms; B) time windows. Models are arranged in order
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according to category.

this model (compare Fig. 3B and C), which in part might be attributed to
the high correlation between the two models (see Fig. 2E). At approx-
imately 300 ms, there appeared to be a transition. Here, the faces/body
model, which was the best performing model in between 100 and 200
ms, has declined and the biological continuum model increased its
performance to have comparable explanatory power. Interestingly, the
animacy model was among the weakest performing models, despite a
number of studies showing animacy provides a significant account of
the human and primate brain’s higher-order representation of objects
(e.g., Carlson et al., 2013; Cichy et al., 2014; Kiani et al., 2007; Krie-
geskorte et al., 2008b).

3.5. Models of agency, experience, and human similarity

Higher order factors such as human similarity and agency are known
to influence human perception of objects (Gobbini et al., 2011; Gray
et al., 2007). To assess these attributes, we collected behavioural ratings
for the stimuli about various higher order attributes (e.g., capacity to
experience pleasure), to generate a new set of models. We then tested
whether these models could account for the brain’s emerging represen-
tation of objects (Fig. 3D). Across the models, the results were very
similar, which can be attributed to the high level of overlap in their in-
ternal structure (see Fig. 2E). The models all show an initial peak at
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approximately 90 ms, and then rise to a more significant peak at about
245-280 ms. This pattern was also observed for the biological continuum
model, as seen in Fig. 3C. The best performing model in the later time
window is the human similarity model, which is based on the question
“How similar is this (object) to a human?”

3.6. Human-ness and agency/experience models account for late
representations

Our analysis of the models’ performance in the time series broadly
indicated three distinct stages of processing. Early in the time series
(<100 ms) the low-level feature models performed the best. Next, in the
intermediate time from 100 ms to 200 ms, the face/body and shape
similarity models peaked in their performance. Finally, the higher-order
models based on agency and experience, and the biological continuum
model, showed a slow rise that peaked about 270 ms. To quantify these
observations, we discretised the data in three 100 ms time windows
(0-100 ms; 100-200 ms; 200-300 ms) in which we compared all model
performances. Fig. 4 shows the results of the windowed RSA analysis.
The top row shows the models ordered by performance for each time
period. Below each plot is matrix displaying significant differences in
performance between models. The bottom row shows visualisations of
the representations at each stage constructed by projecting the data into
two dimensions using t-SNE (Maaten and Hinton, 2008).

To compare the models, we conducted a series of t-tests between all
pairwise models to assess between-model performance in each of these
time windows separately (adjusted for multiple comparisons across
model comparisons at FDR of q < 0.01). In the early time window (0-100
ms), the high-level shape model had the highest correlation (Fig. 4A).
This model outperformed all the other models excluding Jaccard and
HMAX. In the second time window (100-200 ms), the shape model again
outperformed all of the other models, including the face/body model,
which it was highly correlated with (Fig. 2E). In the final time window
(200-300 ms), the human similarity model was the best model overall
(Fig. 4Q), significantly better than all the other models excluding the
face/body model. Overall, the results of the windowed analysis agree
with the observations from the time series data. Shape similarity pro-
vided the best fit for early and intermediate stage representations. In late
stage object processing, humanness was the best performing model,
while the explanatory power of shape similarity diminished.

4. Discussion

Many classifications, such as animate/inanimate and living/non-
living, have been proposed as organisational principles for the brain’s
representation of objects. Here we sought to provide an in-depth evalu-
ation of contemporary models of visual object representations by eval-
uating their capacity to account for neural responses to a diverse range of
object stimuli. In addition to these contemporary models and models
based on low-level visual similarity, we created new theoretical and
behaviour-based models. To test the predictive power of these models,
we included novel stimuli that did not conform to the typical categories,
such as robots and toys. Our results showed shape similarity best
accounted for the brain’s representation of the stimuli in early (<100 ms)
and at intermediate stages (100-200 ms) processing. At later stages of
processing, we found the brain employs a richer encoding scheme that
incorporates an object’s capacity for agency and experience. Of these
models, the best performing was one based on the broad concept of
human-similarity.

Our findings are consistent with accepted knowledge about the flow
of information in human object recognition (for review see Contini et al.,
2017). This multi-stage processes begins with processing low-level visual
properties of the stimulus, presumably in early visual cortex. These early
representations are then subsequently transformed into higher order
representations incorporating category structure (Carlson et al., 2013;
Cichy et al.,, 2016; Contini et al., 2017) and semantic information
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(Carlson et al., 2014; Clarke and Tyler, 2014). We found the best per-
forming models at early time points were the low-level feature models
(Shape, Jaccard, and HMAX), while higher order models (based on
agency and experience) progressively fit the data better later in the time
series.

One of the most striking results was that one of the lowest performing
models was the animate vs. inanimate model, despite being a well-
established model in the literature (Caramazza and Shelton, 1998;
Carlson et al., 2013; Cichy et al., 2014; Kiani et al., 2007; Kriegeskorte
et al., 2008a,b; Proklova et al., 2016). Our study included stimuli that do
not clearly have membership in the animate or inanimate categories
(Bracci and Op de Beeck, 2016; Carlson et al., 2013; Cichy et al., 2014;
Konkle and Caramazza, 2013; Kriegeskorte et al., 2008a,b; Proklova
et al., 2016). The poor performance of the animate vs. inanimate model
(and similarly the living vs. non-living model) likely could be accounted
for by the inclusion of robots and toys. For example, visually inspecting
the t-SNE plots (Fig. 4) shows that robots are represented closer to
humans and animate objects than to inanimate objects. This suggests that
an animate/inanimate distinction is not the best way to classify these
stimuli, and further highlights the impact of stimulus selection on
defining the organisation of object categories (c.f. Carlson et al., 2018;
Goddard et al., 2018). Indeed, a recent fMRI study by Bracci et al. (2017)
showed that visually confusing objects (e.g., a mug in the shape of a cow)
exhibited neural activity patterns that were more similar to animate
objects (i.e., an actual cow) than inanimates (Bracci et al., 2017).
Furthermore, as exemplar typicality affects the distinctiveness of cate-
gory representations (lordan et al., 2016), the inclusion of these ambig-
uous object categories may have disproportionately affected a strict
dichotomous categorisation model.

The strong performance of the human model in late stage processing
builds on our existing understanding of the representation of object
categories in the brain. This aligns with recent work demonstrating the
role of higher order constructs like agency in the visual representation of
objects (Haxby et al., 2020); and extends on the continuum idea of
Connolly et al. (2012) and Sha et al. (2015), as it represents a type of
human-similarity continuum (see also Thorat et al., 2019). Unlike the
animacy continuum that is based on biological classes, the human model
was not limited by biology (Gobbini et al., 2011; Tong et al., 2000).
Results from an fMRI study by Gobbini et al. (2011) are also consistent
with a level of cross-over between animate/inanimate object categories
that does not fit into this dichotomy, nor a continuum based on biological
classes. The authors compared human observers’ perception of human
faces and robots and found that robots evoked activation in areas asso-
ciated with faces (though to a lesser extent than humans), while also
activating object areas and areas associated with mechanical movements.
This supports the idea of more a complex model of object categorisation
that incorporates factors such as agency and human-related experiences.
Given the relative strength of our human-centric model in accounting for
the data, the idea of “humanness” as an important dimension in the
neural representation of objects warrants further exploration.

Our study tested a diverse range of stimuli and models. The richness
of the dataset offers the future possibility of testing additional models.
For example, one could envision a hybrid face model that indicates the
presence of a face in the image with levels based on species: human, non-
human primate, mammals, insects, inanimate objects with faces (toys,
robots). The dataset accordingly will be made publicly available for
future work. The diverse set of models tested has both limitations and
benefits. One limitation is many of the models are not independent
(Fig. 2E), which creates issues in interpretability. For example, the fits of
the face/body model and the shape model to the MEG data had similar
trajectories (Fig. 3B and C). The two models are also correlated (2 E), so it
remains unknown whether the explanatory power of each of the models
is based on the presence of face or body in the image or the shape of the
figure in the image. Issues such as these will need to be disentangled in
future work using a stimulus set designed to target these individual
research questions. One strength of testing such a wide range of models is
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each individual models’ fit to the data gives insight into the brain’s
representations of the stimuli. If, for example, we had tested the human
similarity model in the absence of the agency and experience models, the
nature of the humanness model would be considerably more abstract.
Here, we can see from the overlap between the agency/experience
models (Fig. 2E) that the notion of humanness is captured well by factors
like capacity for agency and experience.

Our human-centric model likely encompasses a complex set of fea-
tures, including both visual and conceptual factors. This is evidenced by
the overlap between the human-centric model and the other models
(HMAX, Jaccard, Animate, the two cluster models, and the agency and
experience models, see Fig. 2). We did not impose a definition or any
criteria against which people should rate the objects when asked ‘How
similar is it to a human?’ (with responses from this survey used to
generate the human model). Accordingly, we do not know which features
people were using to rate object ‘humanness’, raising an interesting area
for further investigation. The brain likely makes use of both visual and
semantic information for representing objects (Carlson et al., 2014;
Clarke and Tyler, 2014; Coggan et al., 2016). Our data suggests that the
semantic component of object representations incorporates information
about concepts such as function, agency, and human experience. Indeed,
a recent study by Connolly et al. (2012) showed an overlap between
regions sensitive to the perceived threat of animals and those associated
with social cognition, highlighting the importance of agent-related di-
mensions to object processing.

Presently, we still do not have a clear understanding of how different
semantic concepts relate to object representations and category structure.
A recent model attempts to explain the neural representation of object
attempts using a multidimensional framework (Martin, 2016). In this
paper, the author suggests that neural patterns associated with objects
are formed from complex interactive circuits based on a range of systems
throughout the brain, including those associated with action, perception
and emotion. This idea shifts the focus away from models based on cat-
egories, with a view to a more holistic approach to object representations
that considers interactions between various circuits throughout the
brain. In this multidimensional framework, it is essential to recognize
that no single feature or attribute could be able to fully explain the
richness of the brain’s (multidimensional) representation of objects (see
e.g., Thorat, et al., 2019). Recent fMRI studies have sought to identify
principle axes of object representations in the brain (e.g., Connolly, et al.,
2012; Sha et al., 2015; Thorat et al., 2019). In the present study, we show
that the human similarity provided a strong account of late stage pro-
cessing, highlighting “humanness” as a key feature in the human brain’s
representation of objects that shapes our experience of the world.
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