1,587 research outputs found
'Lad culture' in higher education: agency in the sexualisation debates
This paper reports on research funded by the National Union of Students, which explored women students’ experiences of ‘lad culture’ through focus groups and interviews. We found that although laddism is only one of various potential masculinities, for our participants it dominated social and sexual spheres of university life in problematic ways. However, their objections to laddish behaviours did not support contemporary models of ‘sexual panic’, even while oppugning the more simplistic celebrations of young women’s empowerment which have been observed in debates about sexualisation. We argue that in their ability to reject ‘lad culture’, our respondents expressed a form of agency which is often invisibilised in sexualisation discussions and which could be harnessed to tackle some of the issues we uncovered
Spontaneous DC Current Generation in a Resistively Shunted Semiconductor Superlattice Driven by a TeraHertz Field
We study a resistively shunted semiconductor superlattice subject to a
high-frequency electric field. Using a balance equation approach that
incorporates the influence of the electric circuit, we determine numerically a
range of amplitude and frequency of the ac field for which a dc bias and
current are generated spontaneously and show that this region is likely
accessible to current experiments. Our simulations reveal that the Bloch
frequency corresponding to the spontaneous dc bias is approximately an integer
multiple of the ac field frequency.Comment: 8 pages, Revtex, 3 Postscript figure
Adiabatically coupled systems and fractional monodromy
We present a 1-parameter family of systems with fractional monodromy and
adiabatic separation of motion. We relate the presence of monodromy to a
redistribution of states both in the quantum and semi-quantum spectrum. We show
how the fractional monodromy arises from the non diagonal action of the
dynamical symmetry of the system and manifests itself as a generic property of
an important subclass of adiabatically coupled systems
JRA3 Electromagnetic Calorimeter Technical Design Report
This report describes the design of the prototype for an Silicon Tungsten electromagnetic calorimeter with unprecedented high granularity to be operated in a detector at the International Linear Collider (ILC). The R&D for the prototype is co-funded by the European Union in the FP6 framework within the so called EUDET project in the years 2006-2010. The dimensions of the prototype are similar to those envisaged for the final detector. Already at this stage the prototype features a highly compact design. The sensitive layers, the Very Front End Electronics serving 64 channels per ASIC and copper plates for heat draining are integrated within 2000 μm
Fermi-LAT Constraints on the Pulsar Wind Nebula Nature of HESS J1857+026
Since its launch, the Fermi satellite has firmly identified 5 pulsar wind nebulae plus a large number of candidates, all powered by young and energetic pulsars. HESS J1857+026 is a spatially extended gamma-ray source detected by H.E.S.S. and classified as a possible pulsar wind nebula candidate powered by PSR J1856+0245. Aims. We search for -ray pulsations from PSR J1856+0245 and explore the characteristics of its associated pulsar wind nebula. Methods. Using a rotational ephemeris obtained from the Lovell telescope at Jodrell Bank Observatory at 1.5 GHz, we phase.fold 36 months of gamma-ray data acquired by the Large Area Telescope (LAT) aboard Fermi. We also perform a complete gamma-ray spectral and morphological analysis. Results. No pulsation was detected from PSR J1856+0245. However, significant emission is detected at a position coincident with the TeV source HESS J1857+026. The gamma-ray spectrum is well described by a simple power law with a spectral index of Gamma = 1.53 +/- 0.11(sub stat) +/- 0.55(sub syst) and an energy flux of G(0.1 C100 GeV) = (2.71 +/- 0.52(sub stat) +/- 1.51(sub syst) X 10(exp -11) ergs/ sq cm/s. This implies a gamma.ray efficiency of approx 5 %, assuming a distance of 9 kpc, the gamma-ray luminosity of L(sub gamma) (sub PWN) (0.1 C100 GeV) = (2.5 +/- 0.5(sub stat) +/- 1.5(sub syst)) X 10(exp 35)(d/(9kpc))(exp 2) ergs/s and E-dot = 4.6 X 10(exp 36) erg /s, in the range expected for pulsar wind nebulae. Detailed multi-wavelength modeling provides new constraints on its pulsar wind nebula nature
Does document relevance affect the searcher's perception 0f time?
Time plays an essential role in multiple areas of Information Retrieval (IR) studies such as search evaluation, user behavior analysis, temporal search result ranking and query understanding. Especially, in search evaluation studies, time is usually adopted as a measure to quantify users' efforts in search processes. Psychological studies have reported that the time perception of human beings can be affected by many stimuli, such as attention and motivation, which are closely related to many cognitive factors in search. Considering the fact that users' search experiences are affected by their subjective feelings of time, rather than the objective time measured by timing devices, it is necessary to look into the different factors that have impacts on search users' perception of time. In this work, we make a first step towards revealing the time perception mechanism of search users with the following contributions: (1) We establish an experimental research framework to measure the subjective perception of time while reading documents in search scenario, which originates from but is also different from traditional time perception measurements in psychological studies. (2) With the framework, we show that while users are reading result documents, document relevance has small yet visible effect on search users' perception of time. By further examining the impact of other factors, we demonstrate that the effect on relevant documents can also be influenced by individuals and tasks. (3) We conduct a preliminary experiment in which the difference between perceived time and dwell time is taken into consideration in a search evaluation task. We found that the revised framework achieved a better correlation with users' satisfaction feedbacks. This work may help us better understand the time perception mechanism of search users and provide insights in how to better incorporate time factor in search evaluation studies
Fermi-LAT Study of Gamma-ray Emission in the Direction of Supernova Remnant W49B
We present an analysis of the gamma-ray data obtained with the Large Area
Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the direction of
SNR W49B (G43.3-0.2). A bright unresolved gamma-ray source detected at a
significance of 38 sigma is found to coincide with SNR W49B. The energy
spectrum in the 0.2-200 GeV range gradually steepens toward high energies. The
luminosity is estimated to be 1.5x10^{36} (D/8 kpc)^2 erg s^-1 in this energy
range. There is no indication that the gamma-ray emission comes from a pulsar.
Assuming that the SNR shell is the site of gamma-ray production, the observed
spectrum can be explained either by the decay of neutral pi mesons produced
through the proton-proton collisions or by electron bremsstrahlung. The
calculated energy density of relativistic particles responsible for the LAT
flux is estimated to be remarkably large, U_{e,p}>10^4 eV cm^-3, for either
gamma-ray production mechanism.Comment: 9 pages, 10 figure
Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT
Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting
radiation across the electromagnetic spectrum. Although there are more than
1800 known radio pulsars, until recently, only seven were observed to pulse in
gamma rays and these were all discovered at other wavelengths. The Fermi Large
Area Telescope makes it possible to pinpoint neutron stars through their
gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind
frequency searches using the LAT. Most of these pulsars are coincident with
previously unidentified gamma-ray sources, and many are associated with
supernova remnants. Direct detection of gamma-ray pulsars enables studies of
emission mechanisms, population statistics and the energetics of pulsar wind
nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz
Parkinson, Marcus Ziegle
Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni
Novae are thermonuclear explosions on a white dwarf surface fueled by mass
accreted from a companion star. Current physical models posit that shocked
expanding gas from the nova shell can produce X-ray emission but emission at
higher energies has not been widely expected. Here, we report the Fermi Large
Area Telescope detection of variable gamma-ray (0.1-10 GeV) emission from the
recently-detected optical nova of the symbiotic star V407 Cygni. We propose
that the material of the nova shell interacts with the dense ambient medium of
the red giant primary, and that particles can be accelerated effectively to
produce pi0 decay gamma-rays from proton-proton interactions. Emission
involving inverse Compton scattering of the red giant radiation is also
considered and is not ruled out.Comment: 38 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, A.B. Hill, P. Jean, S. Razzaque, K.S. Woo
Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays
A proximity focusing Cherenkov imager called CHERCAM, has been built for the
charge measurement of nuclear cosmic rays with the CREAM instrument. It
consists of a silica aerogel radiator plane across from a detector plane
equipped with 1,600 1" diameter photomultipliers. The two planes are separated
by a ring expansion gap. The Cherenkov light yield is proportional to the
charge squared of the incident particle. The expected relative light collection
accuracy is in the few percents range. It leads to an expected single element
separation over the range of nuclear charge Z of main interest 1 < Z < 26.
CHERCAM is designed to fly with the CREAM balloon experiment. The design of the
instrument and the implemented technical solutions allowing its safe operation
in high altitude conditions (radiations, low pressure, cold) are presented.Comment: 24 pages, 19 figure
- …
