159 research outputs found

    Timing of therapy and neurodevelopmental outcomes in 18 families with pyridoxine-dependent epilepsy

    Get PDF
    Background: Seventy-five percent of patients with pyridoxine-dependent epilepsy due to a-aminoadipic semialdehyde dehydrogenase deficiency (PDE-ALDH7A1) suffer intellectual developmental disability despite pyridoxine treatment. Adjunct lysine reduction therapies (LRT), aimed at lowering putative neurotoxic metabolites, are associated with improved cognitive outcomes. However, possibly due to timing of treatment, not all patients have normal intellectual function. Methods: This retrospective, multi-center cohort study evaluated the effect of timing of pyridoxine monotherapy and pyridoxine with adjunct LRT on neurodevelopmental outcome. Patients with confirmed PDE-ALDH7A1 with at least one sibling with PDE-ALDH7A1 and a difference in age at treatment initiation were eligible and identified via the international PDE registry, resulting in thirty-seven patients of 18 families. Treatment regimen was pyridoxine monotherapy in ten families and pyridoxine with adjunct LRT in the other eight. Primary endpoints were standardized and clinically assessed neurodevelopmental outcomes. Clinical neurodevelopmental status was subjectively assessed over seven domains: overall neurodevelopment, speech/language, cognition, fine and gross motor skills, activities of daily living and behavioral/psychiatric abnormalities. Results: The majority of early treated siblings on pyridoxine monotherapy performed better than their late treated siblings on the clinically assessed domain of fine motor skills. For siblings on pyridoxine and adjunct LRT, the majority of early treated siblings performed better on clinically assessed overall neurodevelopment, cognition, and behavior/psychiatry. Fourteen percent of the total cohort was assessed as normal on all domains. Conclusion: Early treatment with pyridoxine and adjunct LRT may be beneficial for neurodevelopmental outcome. When evaluating a more extensive neurodevelopmental assessment, the actual impairment rate may be higher than the 75% reported in literature. Take- home message: Early initiation of lysine reduction therapies adjunct to pyridoxine treatment in patients with PDE-ALDH7A1 may result in an improved neurodevelopmental outcome. (C) 2022 Published by Elsevier Inc

    Mass Spectrometry-Based (GeLC-MS/MS) Comparative Proteomic Analysis of Endoscopically (ePFT) Collected Pancreatic and Gastroduodenal Fluids

    Get PDF
    Objectives: The secretin-stimulated endoscopic pancreatic function test (ePFT) allows for the safe collection of gastroduodenal and pancreatic fluid from the duodenum. We test the hypothesis that these endoscopically collected fluids have different proteomes. As such, we aim to show that the ePFT method can be used to collect fluid enriched in pancreatic proteins to test for pancreatic function. Methods: Gastroduodenal and pancreatic fluid were collected sequentially from chronic pancreatitis patients undergoing an ePFT. Proteins from each fluid type were extracted using previously published optimized methods and subjected to GeLC-MS/MS analysis for protein identification and bioinformatics analysis. Results: Mass spectrometry analysis identified proteins that were exclusive in either gastroduodenal (46) or pancreatic fluid (234). Subsequent quantitative analysis revealed proteins that were differentially abundant with statistical significance. As expected, proteolytic enzymes and protease inhibitors were among the differentially detected proteins. The proteases pepsinogens and gastrin were enriched in gastroduodenal fluid, while common pancreatic enzymes (e.g., aminopeptidase N, chymotrypsin C, elastase-3A, trypsin, and carboxypeptidase A1, and elastase 2B) were found in greater abundance in pancreatic fluid. Similarly for protease inhibitors, members of the cystatin family were exclusive to gastroduodenal fluid, while serpins A11, B4, and D1 were exclusive to pancreatic fluid. Conclusions: We have shown that ePFT collection coupled with mass spectrometry can be used to identify differentially detected proteins in gastroduodenal and pancreatic fluids. The data obtained using GeLC-MS/MS techniques provide further evidence supporting the feasibility of using ePFT-collected fluid to study specific diseases of the upper gastrointestinal tract, such as chronic pancreatitis

    Interaction of PLP with GFP-MAL2 in the Human Oligodendroglial Cell Line HOG

    Get PDF
    The velocity of the nerve impulse conduction of vertebrates relies on the myelin sheath, an electrically insulating layer that surrounds axons in both the central and peripheral nervous systems, enabling saltatory conduction of the action potential. Oligodendrocytes are the myelin-producing glial cells in the central nervous system. A deeper understanding of the molecular basis of myelination and, specifically, of the transport of myelin proteins, will contribute to the search of the aetiology of many dysmyelinating and demyelinating diseases, including multiple sclerosis. Recent investigations suggest that proteolipid protein (PLP), the major myelin protein, could reach myelin sheath by an indirect transport pathway, that is, a transcytotic route via the plasma membrane of the cell body. If PLP transport relies on a transcytotic process, it is reasonable to consider that this myelin protein could be associated with MAL2, a raft protein essential for transcytosis. In this study, carried out with the human oligodendrocytic cell line HOG, we show that PLP colocalized with green fluorescent protein (GFP)-MAL2 after internalization from the plasma membrane. In addition, both immunoprecipitation and immunofluorescence assays, indicated the existence of an interaction between GFP-MAL2 and PLP. Finally, ultrastructural studies demonstrated colocalization of GFP-MAL2 and PLP in vesicles and tubulovesicular structures. Taken together, these results prove for the first time the interaction of PLP and MAL2 in oligodendrocytic cells, supporting the transcytotic model of PLP transport previously suggested

    Metabolites of Purine Nucleoside Phosphorylase (NP) in Serum Have the Potential to Delineate Pancreatic Adenocarcinoma

    Get PDF
    Pancreatic Adenocarcinoma (PDAC), the fourth highest cause of cancer related deaths in the United States, has the most aggressive presentation resulting in a very short median survival time for the affected patients. Early detection of PDAC is confounded by lack of specific markers that has motivated the use of high throughput molecular approaches to delineate potential biomarkers. To pursue identification of a distinct marker, this study profiled the secretory proteome in 16 PDAC, 2 carcinoma in situ (CIS) and 7 benign patients using label-free mass spectrometry coupled to 1D-SDS-PAGE and Strong Cation-Exchange Chromatography (SCX). A total of 431 proteins were detected of which 56 were found to be significantly elevated in PDAC. Included in this differential set were Parkinson disease autosomal recessive, early onset 7 (PARK 7) and Alpha Synuclein (aSyn), both of which are known to be pathognomonic to Parkinson's disease as well as metabolic enzymes like Purine Nucleoside Phosphorylase (NP) which has been exploited as therapeutic target in cancers. Tissue Microarray analysis confirmed higher expression of aSyn and NP in ductal epithelia of pancreatic tumors compared to benign ducts. Furthermore, extent of both aSyn and NP staining positively correlated with tumor stage and perineural invasion while their intensity of staining correlated with the existence of metastatic lesions in the PDAC tissues. From the biomarker perspective, NP protein levels were higher in PDAC sera and furthermore serum levels of its downstream metabolites guanosine and adenosine were able to distinguish PDAC from benign in an unsupervised hierarchical classification model. Overall, this study for the first time describes elevated levels of aSyn in PDAC as well as highlights the potential of evaluating NP protein expression and levels of its downstream metabolites to develop a multiplex panel for non-invasive detection of PDAC

    Levetiracetam Reverses Synaptic Deficits Produced by Overexpression of SV2A

    Get PDF
    Levetiracetam is an FDA-approved drug used to treat epilepsy and other disorders of the nervous system. Although it is known that levetiracetam binds the synaptic vesicle protein SV2A, how drug binding affects synaptic functioning remains unknown. Here we report that levetiracetam reverses the effects of excess SV2A in autaptic hippocampal neurons. Expression of an SV2A-EGFP fusion protein produced a ∼1.5-fold increase in synaptic levels of SV2, and resulted in reduced synaptic release probability. The overexpression phenotype parallels that seen in neurons from SV2 knockout mice, which experience severe seizures. Overexpression of SV2A also increased synaptic levels of the calcium-sensor protein synaptotagmin, an SV2-binding protein whose stability and trafficking are regulated by SV2. Treatment with levetiracetam rescued normal neurotransmission and restored normal levels of SV2 and synaptotagmin at the synapse. These results indicate that changes in SV2 expression in either direction impact neurotransmission, and suggest that levetiracetam may modulate SV2 protein interactions

    O UTJECAJU HRANIVA NA STVARANJE BILJNOG PRINOSA

    Get PDF
    The dynamics of excited electrons and holes in single layer (SL) MoS2 have so far been difficult to disentangle from the excitons that dominate the optical response of this material. Here, we use time- and angle-resolved photoemission spectroscopy for a SL of MoS2 on a metallic substrate to directly measure the excited free carriers. This allows us to ascertain a direct quasipartide band gap of 1.95 eV and determine an ultrafast (50 fs) extraction of excited free carriers via the metal in contact with the SL MoS2. This process is of key importance for optoelectronic applications that rely on separated free carriers rather than excitons

    Immunoscreening of the extracellular proteome of colorectal cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The release of proteins from tumors can trigger an immune response in cancer patients involving T lymphocytes and B lymphocytes, which results in the generation of antibodies to tumor-derived proteins. Many studies aim to use humoral immune responses, namely autoantibody profiles, directly, as clinical biomarkers. Alternatively, the antibody immune response as an amplification system for tumor associated alterations may be used to indicate putative protein biomarkers with high sensitivity. Aiming at the latter approach we here have implemented an autoantibody profiling strategy which particularly focuses on proteins released by tumor cells in vitro: the so-called secretome.</p> <p>Methods</p> <p>For immunoscreening, the extracellular proteome of five colorectal cancer cell lines was resolved on 2D gels, immobilized on PVDF membranes and used for serological screening with individual sera from 21 colorectal cancer patients and 24 healthy controls. All of the signals from each blot were assigned to a master map, and autoantigen candidates were defined based of the pattern of immunoreactivities. The corresponding proteins were isolated from preparative gels, identified by MALDI-MS and/or by nano-HPLC/ESI-MS/MS and exemplarily confirmed by duplex Western blotting combining the human serum samples with antibodies directed against the protein(s) of interest.</p> <p>Results</p> <p>From 281 secretome proteins stained with autoantibodies in total we first defined the "background patterns" of frequently immunoreactive extracellular proteins in healthy and diseased people. An assignment of these proteins, among them many nominally intracellular proteins, to the subset of exosomal proteins within the secretomes revealed a large overlap. On this basis we defined and consequently confirmed novel biomarker candidates such as the extreme C-terminus of the extracellular matrix protein agrin within the set of cancer-enriched immunorectivities.</p> <p>Conclusions</p> <p>Our findings suggest, first, that autoantibody responses may be due, in large part, to cross-presentation of antigens to the immune system via exosomes, membrane vesicles released by tumor cells and constituting a significant fraction of the secretome. In addition, this immunosecretomics approach has revealed novel biomarker candidates, some of them secretome-specific, and thus serves as a promising complementary tool to the frequently reported immunoproteomic studies for biomarker discovery.</p

    Constitutive Expression of Insulin Receptor Substrate (IRS)-1 Inhibits Myogenic Differentiation through Nuclear Exclusion of Foxo1 in L6 Myoblasts

    Get PDF
    Insulin-like growth factors (IGFs) are well known to play essential roles in enhancement of myogenic differentiation. In this report we showed that initial IGF-I signal activation but long-term IGF-1 signal termination are required for myogenic differentiation. L6 myoblast stably transfected with myc-epitope tagged insulin receptor substrate-1, myc-IRS-1 (L6-mIRS1) was unable to differentiate into myotubes, indicating that IRS-1 constitutive expression inhibited myogenesis. To elucidate the molecular mechanisms underlying myogenic inhibition, IGF-I signaling was examined. IGF-I treatment of control L6 cells for 18 h resulted in a marked suppression of IGF-I stimulated IRS-1 association with the p85 PI 3-kinase and suppression of activation of Akt that correlated with a down regulation of IRS-1 protein. L6-mIRS1 cells, in contrast, had sustained high levels of IRS-1 protein following 18 h of IGF-I treatment with persistent p85 PI 3-kinase association with IRS-1, Akt phosphorylation and phosphorylation of the downstream Akt substrate, Foxo1. Consistent with Foxo1 phosphorylation, Foxo1 protein was excluded from the nuclei in L6-mIRS1 cells, whereas Foxo1 was localized in the nuclei in control L6 cells during induction of differentiation. In addition, L6 cells stably expressing a dominant-interfering form of Foxo1, Δ256Foxo1 (L6-Δ256Foxo1) were unable to differentiate into myotubes. Together, these data demonstrate that IGF-I regulation of Foxo1 nuclear localization is essential for the myogenic program in L6 cells but that persistent activation of IGF-1 signaling pathways results in a negative feedback to prevent myogenesis

    Incidence of cancer and overall risk of mortality in individuals treated with raltegravir-based and non-raltegravir-based combination antiretroviral therapy regimens

    Get PDF
    Objectives: There are currently few data on the long-term risk of cancer and death in individuals taking raltegravir (RAL). The aim of this analysis was to evaluate whether there is evidence for an association. Methods: The EuroSIDA cohort was divided into three groups: those starting RAL-based combination antiretroviral therapy (cART) on or after 21 December 2007 (RAL); a historical cohort (HIST) of individuals adding a new antiretroviral (ARV) drug (not RAL) to their cART between 1 January 2005 and 20 December 2007, and a concurrent cohort (CONC) of individuals adding a new ARV drug (not RAL) to their cART on or after 21 December 2007. Baseline characteristics were compared using logistic regression. The incidences of newly diagnosed malignancies and death were compared using Poisson regression. Results: The RAL cohort included 1470 individuals [with 4058 person-years of follow-up (PYFU)] compared with 3787 (4472 PYFU) and 4467 (10 691 PYFU) in the HIST and CONC cohorts, respectively. The prevalence of non-AIDS-related malignancies prior to baseline tended to be higher in the RAL cohort vs. the HIST cohort [adjusted odds ratio (aOR) 1.31; 95% confidence interval (CI) 0.95–1.80] and vs. the CONC cohort (aOR 1.89; 95% CI 1.37–2.61). In intention-to-treat (ITT) analysis (events: RAL, 50; HIST, 45; CONC, 127), the incidence of all new malignancies was 1.11 (95% CI 0.84–1.46) per 100 PYFU in the RAL cohort vs. 1.20 (95% CI 0.90–1.61) and 0.83 (95% CI 0.70–0.99) in the HIST and CONC cohorts, respectively. After adjustment, there was no evidence for a difference in the risk of malignancies [adjusted rate ratio (RR) 0.73; 95% CI 0.47–1.14 for RALvs. HIST; RR 0.95; 95% CI 0.65–1.39 for RALvs. CONC] or mortality (adjusted RR 0.87; 95% CI 0.53–1.43 for RALvs. HIST; RR 1.14; 95% CI 0.76–1.72 for RALvs. CONC). Conclusions: We found no evidence for an oncogenic risk or poorer survival associated with using RAL compared with control groups.Peer reviewe

    A secretome profile indicative of oleate-induced proliferation of HepG2 hepatocellular carcinoma cells

    Get PDF
    Increased fatty acid (FA) is often observed in highly proliferative tumors. FAs have been shown to modulate the secretion of proteins from tumor cells, contributing to tumor survival. However, the secreted factors affected by FA have not been systematically explored. Here, we found that treatment of oleate, a monounsaturated omega-9 FA, promoted the proliferation of HepG2 cells. To examine the secreted factors associated with oleate-induced cell proliferation, we performed a comprehensive secretome profiling of oleate-treated and untreated HepG2 cells. A comparison of the secretomes identified 349 differentially secreted proteins (DSPs; 145 upregulated and 192 downregulated) in oleate-treated samples, compared to untreated samples. The functional enrichment and network analyses of the DSPs revealed that the 145 upregulated secreted proteins by oleate treatment were mainly associated with cell proliferation-related processes, such as lipid metabolism, inflammatory response, and ER stress. Based on the network models of the DSPs, we selected six DSPs (MIF, THBS1, PDIA3, APOA1, FASN, and EEF2) that can represent such processes related to cell proliferation. Thus, our results provided a secretome profile indicative of an oleate-induced proliferation of HepG2 cell
    corecore