75 research outputs found

    Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity

    Get PDF
    Background: Silver nanoparticles (AgNPs) have attracted great attention due to their outstanding electrical, optical, magnetic, catalytic, and antimicrobial properties. However, there is a need for alternative production methods that use less toxic precursors and reduce their undesirable by-products. Phyto-extracts from the leaves of olive and rosemary plants can be used as reducing agents and (in conjunction with Tollens’ reagent) can even enhance AgNP antimicrobial activity. Methods: Conditions for the proposed hybrid synthesis method were optimized for olive leaf extracts (OLEs) and rosemary leaf extracts (RLEs). The resultant AgNPs were characterized using UV–visible spectroscopy, an environmental scanning electron microscope, and Dynamic Light Scattering analysis. An atomic absorption spectrophotometer was used to measure AgNP concentration. Fourier transform infrared spectroscopy (FTIR) was used to determine the specific functional groups responsible for the reduction of both silver nitrate and capping agents in the leaf extract. Additionally, the antimicrobial properties of the synthesized AgNPs were assessed against Gram-negative bacteria (Escherichia coli and Salmonella enterica) and Gram-positive bacteria (Staphylococcus aureus), by using both the Kirby–Bauer and broth microdilution methods on Mueller–Hinton (MH) agar plates. Results and Discussion: A simple, feasible, and rapid method has been successfully developed for silver nanoparticle synthesis by reducing Tollens’ reagent using leaf extracts from olive and rosemary plants (widely available in Jordan). Scanning electron microscopy images showed that the method produces AgNPs with a spherical shape and average core sizes of 45 ± 2 and 38 ± 3 nm for OLE and RLE, respectively. A negative zeta potential (ζ) of −43.15 ± 3.65 mV for OLE-AgNPs and −33.65 ± 2.88mV for RLE-AgNPs proved the stability of silver nanoparticles. FTIR spectra for AgNPs and leaf extracts indicated that the compounds present in the leaf extracts play an important role in the coating/capping of synthesized nanoparticles. The manufactured AgNPs exhibited an antibacterial effect against Escherichia coli and Staphylococcus aureus with minimum inhibitory concentrations (MIC) of 9.38 and 4.69 μl/ml for OLE-AgNPs and RLE-AgNPs, respectively. The MIC for Salmonella enterica were 18.75 μl/ml for both OLE-AgNPs and RLE-AgNPs. Furthermore, our results indicated that the RLE-AgNPs exhibited a stronger antibacterial effect than OLE-AgNPs against different bacteria species. These results contribute to the body of knowledge on nanoparticle production using plant-mediated synthesis and performance. They also offer insights into the potential for scaling up this production process for commercial implementation

    The support model for people with legally modified abilities according to United Nations

    Get PDF
    Este artículo se basa en una investigación social sobre el sistema de protección jurídica de las personas con algún tipo de discapacidad o en situación de dependencia que se encuentran sometidas a las figuras de tutela o curatela, en aplicación de lo previsto y establecido en el Código Civil Español, en sus artículos 199 y 200, así como en la Ley de Enjuiciamiento Civil. La investigación se plantea como un estudio comparado entre diferentes países de la Unión Europea para ver su adecuación a lo establecido en el artículo 12 de la Convención de Naciones Unidas sobre derechos de las Personas con Discapacidad (en adelante, CDPD) en los procedimientos de incapacitación. Los resultados se analizan sobre la base de modelos técnico-sociales de intervención, los análisis jurídicos y la experiencia adquirida por las Fundación Tutelares de Castilla y León. Se proponen y diseñan algunas alternativas y servicios que pueden mejorar la calidad de vida de las personas adultas incapacitadas judicialmente y el tipo de apoyos que se les puede prestar, de acuerdo a lo establecido en la Convención de Naciones Unidas.This article is based on social research into the system of legal protection for persons with disabilities or in a situation of dependence who are subject to the figures of guardianship or conservatorship pursuant to the provisions in the Spanish Civil Code, sections 199 and 200, as well as the Code of Civil Procedure. The research is presented as a comparative study between different countries of the European Union regarding the adaptation to the provisions of Article 12 of the UN Convention on Rights of Persons with Disabilities (hereinafter CRPD) Incapacitation procedures. The results are analyzed on the basis of technical-social intervention models, legal analysis and the experience of Guardianship Foundations of Castilla y León. Some alternatives and services are proposed and designed that can improve the quality of life of legally incapacitated persons and the type of support that can be provided to them in accordance with the provisions of the United Nations Convention

    Adaptively monitoring streamflow using a stereo computer vision system

    Get PDF
    The gauging of free surface flows in waterways provides the foundation for monitoring and managing the water resources of built and natural environments. A significant body of literature exists around the techniques and benefits of optical surface velocimetry methods to estimate flows in waterways without intrusive instruments or structures. However, to date, the operational application of these surface velocimetry methods has been limited by site configuration and inherent challenging optical variability across different natural and constructed waterway environments. This work demonstrates a significant advancement in the operationalisation of non-contact stream discharge gauging applied in the computer vision stream gauging (CVSG) system through the use of methods for remotely estimating water levels and adaptively learning discharge ratings over time. A cost-effective stereo camera-based stream gauging device (CVSG device) has been developed for streamlined site deployments and automated data collection. Evaluations between reference state-of-the-art discharge measurement technologies using DischargeLab (using surface structure image velocimetry), Hydro-STIV (using space–time image velocimetry), acoustic Doppler current profilers (ADCPs), and gauging station discharge ratings demonstrated that the optical surface velocimetry methods were capable of estimating discharge within a 5 %–15 % range between these best available measurement approaches. Furthermore, results indicated model machine learning approaches leveraging data to improve performance over a period of months at the study sites produced a marked 5 %–10 % improvement in discharge estimates, despite underlying noise in stereophotogrammetry water level or optical flow measurements. The operationalisation of optical surface velocimetry technology, such as CVSG, offers substantial advantages towards not only improving the overall density and availability of data used in stream gauging, but also providing a safe and non-contact approach for effectively measuring high-flow rates while providing an adaptive solution for gauging streams with non-stationary characteristics.</p

    Chapter 7: Wetlands

    Get PDF
    Contains fulltext : 205862.pdf (publisher's version ) (Open Access

    Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide

    Get PDF
    Inland waters play an active role in the global carbon cycle and emit large volumes of the greenhouse gases (GHGs), methane (CH4) and carbon dioxide (CO2). A considerable body of research has improved emissions estimates from lakes, reservoirs and rivers but recent attention has been drawn to the importance of small, artificial waterbodies as poorly quantified but potentially important emission hotspots. Of particular interest are emissions from drainage ditches and constructed ponds. These waterbody types are prevalent in many landscapes and their cumulative surface areas can be substantial. Furthermore, GHG emissions from constructed waterbodies are anthropogenic in origin and form part of national emissions reporting, whereas emissions from natural waterbodies do not (according to Intergovernmental Panel on Climate Change guidelines). Here, we present GHG data from two complementary studies covering a range of land uses. In the first, we measured emissions from nine ponds and seven ditches over a full year. Annual emissions varied considerably: 0.1–44.3 g CH4 m−2 year−1 and −36–4421 g CO2 m−2 year−1. In the second, we measured GHG concentrations in 96 ponds and 64 ditches across seven countries, covering subtropical, temperate and sub-arctic biomes. When CH4 emissions were converted to CO2 equivalents, 93% of waterbodies were GHG sources. In both studies, GHGs were positively related to nutrient status (C, N, P), and pond GHG concentrations were highest in smallest waterbodies. Ditch and pond emissions were larger per unit area when compared to equivalent natural systems (streams, natural ponds). We show that GHG emissions from natural systems should not be used as proxies for those from artificial waterbodies, and that artificial waterbodies have the potential to make a substantial but largely unquantified contribution to emissions from the Agriculture, Forestry and Other Land Use sector, and the global carbon cycle

    Dispatchability, energy security, and reduced capital cost in tidal-wind and tidal-solar energy farms

    Get PDF
    The global tidal energy resource for electricity generation is small, and converting tidal kinetic energy to electricity is expensive compared to solar-photovoltaic or land-based wind turbine generators. However, as the renewable energy content in electricity supplies grows, the need to stabilise these supplies increases. This paper describes tidal energy's potential to reduce intermittency and variability in electricity supplied from solar and wind power farms while lowering the capital expenditure needed to improve dispatchability. The paper provides a model and hypothetical case studies to demonstrate how sharing energy storage between tidal stream power generators and wind or solar power generators can mitigate the level, frequency, and duration of power loss from wind or solar PV farms. The improvements in dispatchability use tidal energy's innate regularity and take account of tidal asymmetry and extended duration low-velocity neap tides. The case studies are based on a national assessment of Australian tidal energy resources carried out from 2018 to 2021

    A novel low-cost, high-resolution camera system for measuring peat subsidence and water table dynamics

    Get PDF
    Peatlands are highly dynamic systems, able to accumulate carbon over millennia under natural conditions, but susceptible to rapid subsidence and carbon loss when drained. Short-term, seasonal and long-term peat surface elevation changes are closely linked to key peatland attributes such as water table depth (WTD) and carbon balance, and may be measured remotely using satellite radar and LiDAR methods. However, field measurements of peat elevation change are spatially and temporally sparse, reliant on low-resolution manual subsidence pole measurements, or expensive sensor systems. Here we describe a novel, simple and low-cost image-based method for measuring peat surface motion and WTD using commercially available time-lapse cameras and image processing methods. Based on almost two years’ deployment of peat cameras across contrasting forested, burned, agricultural and oil palm plantation sites in Central Kalimantan, Indonesia, we show that the method can capture extremely high resolution (sub-mm) and high-frequency (sub-daily) changes in peat surface elevation over extended periods and under challenging environmental conditions. WTD measurements were of similar quality to commercially available pressure transducers. Results reveal dynamic peat elevation response to individual rain events, consistent with variations in WTD. Over the course of the relatively severe 2019 dry season, cameras in deep-drained peatlands recorded maximum peat shrinkage of over 8 cm, followed by partial rebound, leading to net annual subsidence of up to 5 cm. Sites with higher water tables, and where borehole irrigation was used to maintain soil moisture, had lower subsidence, suggesting potential to reduce subsidence through altered land-management. Given the established link between subsidence and CO2 emissions, these results have direct implications for the management of peatlands to reduce high current greenhouse gas (GHG) emissions. Camera-based sensors provide a simple, low-cost alternative to commercial elevation, WTD and GHG flux monitoring systems, suitable for deployment at scale, and in areas where existing approaches are impractical or unaffordable. If ground-based observations of peat motion can be linked to measured GHG fluxes and with satellite-based monitoring tools, this approach offers the potential for a large-scale peatland monitoring tool, suitable for identifying areas of active carbon loss, targeting climate change mitigation interventions, and evaluating intervention outcomes
    • …
    corecore