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ABSTRACT
Background: Silver nanoparticles (AgNPs) have attracted great attention due to their
outstanding electrical, optical, magnetic, catalytic, and antimicrobial properties.
However, there is a need for alternative production methods that use less toxic
precursors and reduce their undesirable by-products. Phyto-extracts from the leaves
of olive and rosemary plants can be used as reducing agents and (in conjunction with
Tollens’ reagent) can even enhance AgNP antimicrobial activity.
Methods: Conditions for the proposed hybrid synthesis method were optimized for
olive leaf extracts (OLEs) and rosemary leaf extracts (RLEs). The resultant AgNPs
were characterized using UV–visible spectroscopy, an environmental scanning
electron microscope, and Dynamic Light Scattering analysis. An atomic absorption
spectrophotometer was used to measure AgNP concentration. Fourier transform
infrared spectroscopy (FTIR) was used to determine the specific functional
groups responsible for the reduction of both silver nitrate and capping agents in the
leaf extract. Additionally, the antimicrobial properties of the synthesized AgNPs
were assessed against Gram-negative bacteria (Escherichia coli and Salmonella
enterica) and Gram-positive bacteria (Staphylococcus aureus), by using
both the Kirby–Bauer and broth microdilution methods on Mueller–Hinton
(MH) agar plates.
Results and Discussion: A simple, feasible, and rapid method has been successfully
developed for silver nanoparticle synthesis by reducing Tollens’ reagent using leaf
extracts from olive and rosemary plants (widely available in Jordan). Scanning
electron microscopy images showed that the method produces AgNPs with a
spherical shape and average core sizes of 45 ± 2 and 38 ± 3 nm for OLE and RLE,
respectively. A negative zeta potential (ζ) of -43.15 ± 3.65 mV for OLE-AgNPs and
-33.65 ± 2.88mV for RLE-AgNPs proved the stability of silver nanoparticles.
FTIR spectra for AgNPs and leaf extracts indicated that the compounds present in
the leaf extracts play an important role in the coating/capping of synthesized
nanoparticles. The manufactured AgNPs exhibited an antibacterial effect against
Escherichia coli and Staphylococcus aureus with minimum inhibitory concentrations
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(MIC) of 9.38 and 4.69 ml/ml for OLE-AgNPs and RLE-AgNPs, respectively.
The MIC for Salmonella enterica were 18.75 ml/ml for both OLE-AgNPs and
RLE-AgNPs. Furthermore, our results indicated that the RLE-AgNPs exhibited a
stronger antibacterial effect than OLE-AgNPs against different bacteria species.
These results contribute to the body of knowledge on nanoparticle production using
plant-mediated synthesis and performance. They also offer insights into the potential
for scaling up this production process for commercial implementation.

Subjects Microbiology, Green Chemistry
Keywords Silver nanoparticles (AgNPs), Tollens’ method, Olive leaves extract (OLE),
Rosemary leaves extract (RLE), Antimicrobial effect

INTRODUCTION
Silver nanoparticles (AgNPs) have attracted great attention due to their outstanding
electrical, optical, magnetic, catalytic, and antimicrobial properties (Rai, Yadav &
Gade, 2009). In 2015, Vance and coworkers redeveloped the nanomaterials
consumer products inventory and listed 1,814 nano-based consumer products from
622 companies within 32 countries—a 28% increase over the 2010 inventory.
Almost half of the products (762, or 42% of the total) were intended for health
and fitness applications. Moreover, AgNPs were the most frequently used
nanomaterial (435 products, or 24%), due to their antimicrobial properties
(Vance et al., 2015).

Silver nanoparticles are produced using a wide variety of physical and chemical
methods. Most physical methods require high energy consumption, a large space, and/or
lengthy time periods. This is due to the need to achieve thermal stability while raising
the environmental temperature around the source material in the tube furnace to ensure
stable operating temperatures. On the other hand, common chemical methods utilize
hazardous reducing chemicals, such as sodium borohydride, hydrazine, or hydrogen, that
can have adverse effects on the environment and human health (Sharma, Yngard &
Lin, 2009; Abou El-Nour et al., 2010).

Chemical methods involve the reduction of silver salts with a reductant such as citrate
acid and a solvent like sodium borohydride. Additionally, a stabilizer is needed to
prevent agglomeration of the nanoparticles (Huang & Yang, 2004). Since the mid-1990s,
greener methods for producing nanoparticles have been sought (Murray, Norris &
Bawendi, 1993; Trindade & O’Brien, 1996; Raveendran, Fu & Wallen, 2003).

Green synthesis encompasses the use of less toxic precursors, a low number of reagents,
and benign solvents such as water at close to room temperature—with the expectation
of fewer byproducts and waste streams as compared with conventional processes
(Lu & Ozcan, 2015;Wong & Karn, 2012). Some proposed green methods comprise the use
of mixed-valence polyoxometallates, organic materials (especially polysaccharides),
and enzymes and biological organisms as reducing agents, as well as solvents and
stabilizers (Sharma, Yngard & Lin, 2009).
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Plant-mediated synthesis is one of the most common approaches used in green
synthesis: extracts from various plant components, such as leaves and roots, are used as
reducing and stabilizing agents (Ahmed et al., 2016b). This process is faster and more
benign than conventional methodologies, and can be carried out at room temperature and
pressure (Mittal, Chisti & Banerjee, 2013). Furthermore, plant-mediated synthesized
AgNPs are expected to be stable, cost-effective, and safe, particularly for human
therapeutic use (Sharma, Yngard & Lin, 2009).

Plants that have been effectively used for Ag-NPs synthesis are: pine, persimmon,
gingko, magnolia, platanus (Song & Kim, 2009), Cinnamon zeylanicum (Sathishkumar
et al., 2009), Mentha piperita (Lamiaceae) (Mubarak Ali et al., 2011), olive (Khalil et al.,
2013), maple (Vivekanandhan et al., 2014), Euprenolepis procera (Asgary et al., 2016),
and Aloe vera (Tippayawat et al., 2016). The most commonly reported biomolecules
responsible for the reduction of precursor and stabilization of nanoparticles are
metabolites such as alkaloids, phenolic compounds, terpenoids, and water-soluble
co-enzymes (Mittal, Chisti & Banerjee, 2013).

Tollens’ synthesis method using Tollens’ reagent [Ag(NH3)2]
+ as a source of Ag+ and

aldehyde as a reducing agent, produces AgNPs with a controlled size in a one-step process
(Yin et al., 2002). On the other hand, in a modified Tollens’ procedure, Ag+ ions are
reduced by saccharides in the presence of ammonia, yielding silver nanoparticle films
(50–200 nm), silver hydrosols (20–50 nm), and AgNPs of different shapes (Kvítek et al.,
2005). In this green synthesis technique, the size and morphology of AgNPs were
controlled by changing the concentration of ammonia and the nature of the reducing
agent. In addition, AgNPs with controllable sizes were also synthesized by the reduction of
[Ag(NH3)2]

+ with glucose, galactose, maltose, and lactose (Panáček et al., 2006).
To increase AgNPs stability, sodium dodecyl sulfate, polyoxyethylene
sorbitanemonooleate (Tween 80), and polyvinylpyrrolidone (PVP 360) were used as
stabilizing and capping agents (Kvítek et al., 2008; Soukupová et al., 2008).

This work presents the development of a hybrid synthesis method in which rosemary
leaf extract (RLE) and olive leaf extract (OLE) were used instead of saccharides to
reduce the Tollens’ reagent Ag(NH3)2

+ (aq) into AgNPs. OLE and RLE have been used
effectively to reduce silver salts directly into nanoparticles that display antimicrobial
properties (Shrivastava et al., 2007; Awwad, Salem & Abdeen, 2012; Khalil et al., 2013;
Sulaiman et al., 2013). In this research, however, a new reduction approach using a known
nanosuspensions stabilizer (PVP) was developed for AgNP synthesis using olive and
RLEs in conjunction with Tollens’ reagent. This resulted in a greener synthesis
that exhibited adequate antimicrobial properties. Finally, this approach was expected to
increase the replicability of the nanoparticles produced in terms of size and antimicrobial
properties (Kvítek et al., 2008; Sharma, Yngard & Lin, 2009).

To the knowledge of the authors, no previous study has used this approach for
nanoparticle fabrication. Olive (Olea europaea) and rosemary (Rosmarinus officinalis)
were selected because of their ubiquity, economic efficiency, and well-documented
nutritional and medicinal applications (Khalil et al., 2013; Pereira et al., 2007;
Shelef, Naglik & Bogen, 1980). The olive tree is the most important fruit tree in Jordan,
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covering about 72% of the total planted area and 36% of the total cultivated area in the
country. Between 1991 and 2006, the amount of land devoted to olive cultivation in Jordan
quadrupled (Al-Shdiefat, El-Habbab & Al-Sha’er, 2006). With 20 million olive trees
supporting 180,000 families, Jordan also ranks eighth in the world among olive-producing
nations (The Jordan Times, 2015). Therefore, olive and rosemary can support local AgNPs
production by the proposed synthesis process.

MATERIALS AND METHODS
Materials
Silver nitrate (Fischer Scientific, Guangzhou, China, 99.8% analytical reagent grade),
polyvinylpyrrolidone (ACROS, Morris Plains, NJ, USA, MW = 58,000, PVP), nitric acid
(Merck, Darmstadt, Germany, 69%), nutrient agar, nutrient broth, ammonium hydroxide
aqueous solution (Tedia, Fairfield, OH, USA, 25% w/w, ACS grade), and sodium hydroxide
pellets (Merck, Darmstadt, Germany, 99%) were used without any further purification.
Deionized (DI) water was used for all experiments. Lastly, all glassware was periodically
washed with diluted nitric acid (25%) and then dried in a hot-air oven overnight at 40 �C.

Antibacterial tests were then performed using three representative pathogenic species
obtained from Princess Haya Biotechnology Center, Jordan University of Science
and Technology (JUST) (Irbid, Jordan.): one Gram-positive strain of Staphylococcus
aureus (ATCC 25923) and two Gram-negative strains of Escherichia coli (ATCC 12900)
and Salmonella enterica (CIP 104220).

OLE and RLE preparation
Leaves of olive and rosemary were collected in June 2014 from the campus of the JUST in
Irbid, Jordan. The collected leaves were transported to the laboratory and left to dry at
room temperature (25–30 �C) for 10 days, following the procedure described by
Dipankar & Murugan (2012). The leaves were then washed, and subsequently dried in a
hot-air oven at 40 �C for 5 days to reduce the loss of the leaves’ constituents, as
recommended by Pessoa et al. (2007). The dried leaves were then pulverized into a very fine
powder by grinder and stored at 30 �C. The extract was prepared by adding 0.1 g plant
powder to 100 ml heated water on a hot plate without stirring, and then leaving
the mixture to boil for 10 min to obtain an extract of 0.1 wt% concentration. After that,
extracts were cooled to 30 �C and the supernatant was slowly filtered with 0.45 mm
polyamide membranes (Sartorius Biolab products; Sartorius AG, Göttingen, Germany) via
a pump-filter apparatus to remove any remaining solid residues. The plant leaf
extracts (PLEs) were kept at -4 �C to be used later.

AgNPs Synthesis via Tollens’ method
Silver nanoparticles were prepared using the well-known Tollens’ method. OLEs and
RLEs, rather than saccharides, were used as reducing agents (Kvítek et al., 2008) to reduce
the Tollens’ reagent Ag(NH3)2

+ (aq) into AgNPs.
In addition to the previously prepared extracts, stock solutions of AgNO3 (10

-3 M),
sodium hydroxide (1.25 � 10-2 M), and PVP (8.4 � 10-5 M) were prepared. To prepare
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AgNP dispersions, a tin-foiled 250 ml Erlenmeyer flask container was used as a
reaction vessel and placed on a stirrer plate while a syringe pump apparatus was fitted to
feed the vessel with the reducing agent (PLEs). Initially, 12.5 ml AgNO3 stock
solution was added to the vessel at a stirring speed of 600–700 rpm. Then 38.5 ml of
ammonia solution was added dropwise, followed by 12.5 ml of PVP stock solution.
Finally, 25 ml of 1:1 PLE:NaOH mixture was slowly added to the vessel at a rate
of 75 ml/h using an automatic dosing syringe through a plastic slip. The synthesized
AgNP suspension was then ultrafiltrated using a 10 kDa nominal molecular weight
cut-off membrane via ultrafiltration stirred cell (Model 8200; Millipore,
Burlington, MA, USA, NMWCO:10,000) for concentration, purification, and pH
adjustment. Any nitrate, PVP, Ag+, or PLE not bounded to the nanoparticles
was therefore removed from the solution. The ultrafiltration process consumed up to
600 ml of DI water for each sample, in order to achieve a final purified concentrate
of 50 ml in volume. The AgNP nanosuspension was kept in tin-foiled covered
containers at 4 �C for a period of 6 months for further characterization and
bactericidal experiments.

Instrumentation for characterization
Optical properties of the prepared AgNP nanosuspension were determined using a
UV–Vis spectrophotometer (UV-2550; Shimadzu, Kyoto, Japan). The shape and size of
the AgNPs produced were identified using an environmental scanning electron
microscope (ESEM) Quanta 450 FEG-USA/EEU that operated at an electron gun power
of 30 kV. In order to obtain the ESEM images, the synthesized AgNP dispersions
were sonicated for 10 min in an ultrasonic bath (100 watts) that generates ultrasonic
waves at a 35 kHz frequency (Ultrasonic LC20H; Elma, Singen, Germany). Then the
sonicated dispersions were diluted (1:250,000) and re-sonicated for 30 min. After that,
a drop of this dilute nanosuspension was placed on an ESEM pin stub specimen
mount for measurement. Average silver core diameter was calculated by averaging
50 particles from the ESEM image. Average hydrodynamic diameter (hd), size
distribution, polydispersity index (PDI) and zeta potential (ζ) were determined by
dynamic light scattering analysis (DLS) using a Malvern Zetasizer (Nano-ZS; Malvern
Instruments Ltd., Worcestershire, UK). Measurements were determined three times for
each sample, and uncertainties are given as standard deviations. Raw data were
subsequently correlated to the mean hydrodynamic size by cumulants analysis
(Z-average mean), according to ISO 22412:2017 (ISO, 2017). The dispersions were
sonicated for 30 min using a 200 watt ultrasonic bath (Jeio Tech, Geumcheon-gu, Korea).
No dilution was required before measurement. Fourier Transform Infrared spectra
were obtained using a Spectrophotometer (IR_Affinity, Shimadzu, Kyoto, Japan)
using potassium bromide pellets at 1:10 dilutions and in the ranges between 400 and
4,000 cm-1. Fourier transform infrared spectroscopy (FTIR) measurements were carried
out to identify representative functional groups of possible molecules on the surface of
the nanoparticles.
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AgNPs synthesis conditions
The effect of the reaction conditions such as PLE concentration, temperature, and pH was
evaluated by varying one parameter while the others remained constant; the tested
parameters and ranges are shown in Table 1. The UV–Vis spectra were determined
in triplicate.

Evaluation of AgNPs yield
The OLE-AgNP and RLE-AgNP dispersions were analyzed for their remaining Ag+

concentration using a Shimadzu AA-6200 atomic absorption spectrophotometer (AAS).
The nanosuspensions were centrifuged at a maximum relative centrifugal force of 4,185�g
(6,000 rpm) for 15min (Z 200 A; HERMLE Labortechnik, Wehingen, Germany).
The centrifuge separates the AgNPs at the bottom of the centrifuge tube, leaving the
remaining Ag+ in the supernatant. After proper dilution, the obtained supernatants were
analyzed. The difference in Ag+ concentration between the supernatant of the AgNP
suspension and the standard AgNO3 stock solution thus represents the amount of silver
transformed to AgNPs (Singhal et al., 2011; Raffi et al., 2010).

Antibacterial susceptibility experiments
Three measures of bacterial growth and viability were used to evaluate the antimicrobial
properties of the synthesized AgNPs: The broth microdilution method was used to
determine the minimum inhibition concentration (MIC) and minimum bactericidal
concentration (MBC), whereas the Kirby–Bauer method was used to assess the sensitivity
of bacteria to nanoparticles.

A stock of the AgNP suspension was prepared at a concentration of 100 mg/l and,
as recommended by Clinical and Laboratory Standards Institute (CLSI) guidelines
(Barry et al., 1999), was tested by broth microdilution using a 96-well microplate. Twofold
dilutions of the synthesized AgNPs (e.g., 100, 50, 25, 12.5, 6.25, and 3.125 mg/ml)
were prepared in a Mueller–Hinton broth using a 96-well microtitration plate
(microdilution), in triplicate. Each well was inoculated with 50 ml of the respective

Table 1 Synthesis conditions that was investigated using the modified Tollens’ method and PLEs.

PLE concentration (mg/l) Temperature (�C) pH

20 80 7.0

100 80 7.0

250 80 7.0

250 20 7.0

250 40 7.0

250 80 7.0

250 80 3.0

250 80 5.0

250 80 6.0

250 80 7.0

250 80 11.0
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bacterial suspension (of Mueller–Hinton broth) and the concentration was matched
against a 0.5 McFarland Standard to obtain a concentration of 1 � 106 CFU/ml.
After well-mixing, the inoculated 96-well microtitration plate was incubated at 37 �C for
24 h. Both the MIC and MBC were then detected during this incubation period.
Mueller–Hinton broth was used as a negative control.

The Kirby–Bauer method (Bauer et al., 1966) was used to determine bacterial
susceptibility to OLE-AgNPs and RLE-AgNPs. A triplicate of 100 ml of the respective
bacterial suspension (of Mueller–Hinton broth) with a turbidity of 1 � 105 CFU/ml were
spread out on MH agar plates. The cultured MH agar on each plate was perforated
with holes (wells) using a sterilized glass tube and labeled appropriately. Each well was
filled with 50 ml of either OLE-AgNPs or RLE-AgNPs, and MH agar plates were incubated
at 37 �C for 24 h. Finally, the zones of inhibition (ZI) were measured and reported.
In all tests, silver nitrate was used as a positive control and a blank agar plate was incubated
to detect any contamination that might have occurred during testing.

RESULTS AND DISCUSSION
Optimum AgNPs synthesis
Optical spectra shown in Fig. 1 confirmed AgNP formation at all PLE concentrations by
the detection of the peak of absorption between 410 and 420 nm. This range is
characteristic of AgNP spectra, due to excitation of surface plasmon vibration. Resultant
colors depend on the particle type, size, morphology, and solvent chemical composition
(Bhui et al., 2009; Hao et al., 2004). The color of our synthesized dispersions ranged
from brownish-yellow to deep browns, which is also an indicator of AgNP formation
(Huang & Xu, 2010). The synthesis depended on the PLE concentration, since absorbance
intensity increased by 65% (OLE) and 61% (RLE) by increasing PLE concentration
from 20 to 250 mg/l. For both PLEs, the highest concentration tested provided the
narrowest absorbance spectra, which indicates a more monodisperse nanosuspension
(Bhui et al., 2009). Therefore, the 250 mg/l PLE concentration was selected to investigate
the effects of temperature and pH on the AgNP synthesis.

As shown in Fig. 2, the UV–VIS absorbance intensity increased sharply as temperatures
rose from 20 to 80 �C for 81% (OLE) and 78% (RLE). Such results illustrate the
dependence of the synthesis process on temperature. Therefore, our results suggest that the
simultaneous use of Tollens’ reagent and PLEs is effective only at high temperatures
(i.e., up to 80 �C). As the temperature increases, the reaction rate increases, and more Ag+

is consumed for the formation of nuclei that grow into controlled nanoparticles (Yong &
Beom, 2009). Therefore, the temperature of 80 �C was fixed for the next pH effect
investigation.

Favorable pH basic conditions were shown for the reduction process using both OLE
and RLE extracts (Fig. 3) with an increase in absorbance intensity from pH 2 to 11
with 27% (OLE) and 50% (RLE). This may be due to the PLE organic compounds,
specifically those with carbonyl functional groups which can act as reducing agents only
under basic conditions. Higher pH values increased the number of functional groups
that were available to bind with silver ions and therefore increased the production of
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AgNPs. Under our testing conditions, pH 11 ± 0.2 produced the highest yields in terms of
nanoparticles production as shown by the UV–VIS spectra. These findings are similar to
Khalil et al. (2013), after using OLE as a reducing and stabilizing agent. However, it
was decided that reducing the pH during the ultrafiltration process to 7 ± 0.3 is important
to the selected three bacteria strains in the antibacterial susceptibility experiments
(the optimum pH of the three species ranges between 7.4 and 7.6). Neutral pH is expected
to reduce the AgNP agglomeration that was found to be connected to basicity
(Veerasamy et al., 2011).

The time for AgNP formation was also investigated for the best obtained OLE-AgNP
and RLE-AgNP synthesis conditions. As shown in Fig. 4, for both nanoparticles, the peak
intensity and spectral stability demonstrated that the reduction of silver ions and
the formation of stable AgNPs was approximately completed within 3 h. After reduction
completion, the absorption peak was found at a wavelength of 410 nm, which implied
a AgNP core size of 69 nm and represented the highest production of AgNPs
(Huang & Xu, 2010). These formation times are very rapid in comparison with some

Figure 2 Average AgNPs UV–vis spectra at different synthesis temperature. The synthesis reaction
conditions are fixed at PLE concentration of 250 mg/l and pH of 7 ± 0.2 for both (A) OLE and (B) RLE.
Measurements were performed in triplicates. Full-size DOI: 10.7717/peerj.6413/fig-2

Figure 1 Average AgNPs UV–vis spectra at different PLE concentrations. The synthesis reaction
conditions are fixed at temperature 80 �C and pH 7 ± 0.2 for both (A) OLE and (B) RLE.

Full-size DOI: 10.7717/peerj.6413/fig-1
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previously reported plant-mediated synthesis routes with reaction times of 24 h
(Chandran et al., 2006) and 4 h (Vilchis-Nestor et al., 2008).

AgNP characterization
At favorable conditions, the nanosuspensions were analyzed for AgNP concentration by
AAS. The measured concentrations for OLE-AgNPs and RLE-AgNPs were approximately
50 and 45 mg/l, respectively. The percentages of Ag+ conversion into AgNP (Ag0)
for OLE-AgNPs and RLE-AgNPs were 53% and 48%, respectively.

The morphology of synthesized AgNPs by PLE was examined using ESEM.
The ESEM images of AgNPs showed spherical particles with the average core sizes of
45 ± 2 and 38 ± 3 nm for OLE-AgNPs and RLE-AgNPs, respectively (Fig. 5).
DLS measurements were performed to determine the average hydrodynamic size, size
distribution, and PDI of the AgNPs. The particle size distribution curves of three
consecutive measurements for both OLE-AgNPs and RLE-AgNPs are shown in Fig. 6.

Figure 4 Average UV–vis spectra for AgNPs synthesis at different reaction time using (A) OLE and
(B) RLE. Synthesis reaction conditions are fixed at PLE concentration of 250 mg/l; temperature of 80 �C
and pH = 7 ± 0.2. Measurements were performed in triplicates. Full-size DOI: 10.7717/peerj.6413/fig-4

Figure 3 Average AgNPs UV–vis spectra at different synthesis pH. The synthesis reaction conditions
are fixed at PLE concentration of 250 mg/l and temperature of 80 �C for both (A) OLE and (B) RLE.
Measurements were performed in triplicates. Full-size DOI: 10.7717/peerj.6413/fig-3
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Measurement uncertainties are given as standard deviations. The average sizes
(Z-average size) were 70.27 nm for OLE-AgNPs and 64.16 nm for RLE-AgNPs.
The PDI was found to be 0.295 and 0.424 for OLE-AgNPS and RLE-AgNPs, which are
both less than 0.7 indicating monodispersed particles (Honary et al., 2013). It was
expected that the hydrodynamic diameter would be larger than the core because it
includes surface coating materials and a solvent layer attached to the surface
of the particle as it moves under the influence of Brownian motion (Hess, Frisch &
Klein, 1986).

The AgNPs have negative zeta potentials (ζ) of -43.15 ± 3.65 mV for OLE-AgNPS
and -33.65 ± 2.88 mV for RLE-AgNPs that indicate a high colloidal stability of the
particles (O’Brien et al., 1990; El Badawy et al., 2010; Edison & Sethuraman, 2012).
This negative zeta potential reflects the surface charge of negatively charged AgNPs after
being functionalized with the extract compounds (Hunter, 2013). From the zeta potential
value, it was evident that the synthesized nanoparticles were found to be stable using

Figure 6 Intensity-hydrodynamic size distribution for (A) OLE-AgNPS and (B) RLE-AgNPs as obtained from the DLS.
Full-size DOI: 10.7717/peerj.6413/fig-6

Figure 5 SEM micrographs of the synthesized AgNPs at the optimum conditions (A) OLE-AgNPS
and (B) RLE-AgNPs. Synthesis reaction conditions are PLE concentration of 250 mg/l; temperature
of 80 �C and pH = 7 ± 0.2. Full-size DOI: 10.7717/peerj.6413/fig-5
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leaf extracts and the stability was even enhanced by adding PVP as a secondary
capping agent.

Fourier transform infrared spectroscopy
The dual action of leaf extracts as both reducing and capping agents was investigated using
FTIR spectroscopy. In general, there are two regions in IR spectra: the functional group
region (4,000–1,500 cm-1) and the fingerprint region (1,500–400 cm-1). The intense
absorption peaks for both the extracts and the nanoparticles were used to evaluate the
surface of the AgNPs produced. Because of the adsorption and modifications occurring at
the surface, the functional group region is the most informative. Therefore, our
analysis focused on that region for both the extracts and the synthesized AgNPs. The IR
spectra of OLE and RLE show only minor differences (Table 2). RLE is mainly
composed of isocarnosol (diterpene) dihydronormorphinone (alkaloid) and camphor
(terpenoid) (Genena et al., 2008). The main chemical constituents of OLE are
oleuropein, quercetin, rutin, and luteolin (all polyphenolic compounds) (Khalil, Ismail &
El-Magdoub, 2012).

The spectra for both RLE-AgNPs and OLE-AgNPs (Fig. 7) were also similar to each
other, as well as to the IR peaks of the plant extracts used for their synthesis. This is strong
evidence that compounds present in the extracts not only participated in the
reduction of silver ions, but also were adsorbed on the surface of the nanoparticles
produced. The OLE-AgNPs show the presence of the following peaks 3,371, 3,304, 3,238,
3,221, 2,960, 2,875, 1,687, 1,598, 1,456, and 1,384 cm-1 at the functional group
region, and the following peaks 3,437, 3,257, 3,219, 2,960, 2,887, 1,727, 1,687, 1,598, and
1,456 cm-1 were present in the IR spectrum of the RLE-AgNPs. The peaks at ~3,437, 3,371,
and 3,257 were due to the -NH stretching of amine or -OH stretching of alcohols
and phenols, or bending and stretching of hydrogen-bonded alcohols and phenols in the
leaf extract. This small shift is an indication of adsorption on the surface, especially
for the C=O (more than 10 cm-1). Shanmugam et al. (2014) suggested that these bonds
could be due to the stretching of -OH in proteins, enzymes, or polysaccharides present
in the extract. In addition, the peak at 2,966 cm-1 is due to C–H stretching and

Table 2 FTIR analysis for OLE and RLE extracts.

Functional group OLE IR peak (cm-1) RLE IR peak (cm-1)

Amine N–H stretching 3,455 3,407

3,311 3,282

O–H stretching (H-bonding) 3,187 3,223

C–H of alkanes 2,919 2,917

2,848 2,849

C=O 1,728 1,727

Amide C=O stretch 1,688 1,685

C=C 1,688 1,685

N–H 1,608 1,606

C–O 1,515 1,516
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indicated the presence of alkanes, while the peaks at (2,930, 2,875) and (1,687), and
(690) cm-1 corresponded to C–H stretching, C=C bond aromatic, and C–H
bending respectively, and implied the presence of aromatic compounds. The peak at
1,687 cm-1 also could correspond to amide C=O stretching. The observed O–H and
C=O modes for the OH and C=O groups might be attributed to oleuropein,
apigenin-7-glucoside and/or luteolin-7-glucoside which, as suggested by Khalil, Ismail &
El-Magdoub (2012), are flavonoid compounds present in the olive leaf. It can be concluded
from the FTIR that the presence of organic functional groups, such as alkanes,
aromatic compounds, and amide linkages of protein and amine, played a major role in
the production and stability of AgNPs.

Antimicrobial effect
To explore the antibacterial activity of OLE- and RLE-AgNPs, both the broth
microdilution method (as recommended by CLSI protocol) and the Kirby–Bauer method
were used. The MIC and MBC of OLE- and RLE-AgNP values against selected bacteria
are listed in Table 3.

Figure 7 FTIR spectra of capped AgNPs with ______ OLE and with ______ RLE.
Full-size DOI: 10.7717/peerj.6413/fig-7
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Table 3 shows that the OLE- and RLE-AgNPs exhibited good bactericidal activity
against the three tested bacterial strains after 24 h of incubation. The MIC results for
OLE-AgNPs when used against Staphylococcus aureus and Escherichia coli bacteria were
9.38 ml/ml, with MBC of 12.5 ml/ml. The MIC and MBC against Salmonella were 18.75
and 25 ml/ml, respectively. On the other hand, the MIC results for RLE-AgNPs
against Staphylococcus aureus and Escherichia coli bacteria were 4.69 ml/ml, with MBC of
6.25 ml/ml; against Salmonella the MIC was 18.75 ml/ml and MBC of 25 ml/ml.

In the Kirby–Bauer method, silver nitrate was chosen as a positive control because of its
well-documented antibacterial effects (Liau et al., 1997). The ZI in the antibacterial
susceptibility experiments showed that OLE- and RLE-AgNPs have an inhibitory effect
toward both gram-negative (Escherichia coli and Salmonella) and gram-positive
(Staphylococcus aureus) bacteria, as shown in Table 4. The results showed that
the synthesized AgNPs provided inhibition comparable to the control solution of AgNO3.
The PLEs had a negligible inhibitory effect, most likely due to the low concentrations used
(Ahmed et al., 2016a).

Silver (or what we now know as silver ions Ag+) was well-known for its antimicrobial
properties even during ancient times (Sharma, Yngard & Lin, 2009). Zero-valent
silver Ag0 (AgNPs) slowly releases silver ions via oxidation under aerobic conditions
(Xiu, Ma & Alvarez, 2011). For this reason, the Kirby–Bauer method was selected, since its
protocol is suitable for maintaining AgNP oxidation, and Ag+ is continuously released.

Table 5 compares our synthesis approach with some previously reported
biological routes of AgNP synthesis using different natural plant extracts. As can be
observed, most of the AgNPs were spherical in shape, in the range of 5–500 nm, with
varied antibacterial potency. Huang et al. (2011), for example, studied the synthesis,
formation mechanism, and antibacterial activity of biogenic AgNPs by Cacumen
Platycladi Extract. They found that the MIC andMBC against Escherichia coli were 1.4 and
27 ml/ml, respectively, while the MIC against Staphylococcus aureus was 5.4 ml/ml.

Table 3 Antibacterial activity of OLE-AgNPs and RLE-AgNPs against S. aureus, Salmonella, and
E-coli.

Pathogenic bacteria OLE-AgNPs RLE-AgNPs

MIC μl/ml MBC μl/ml MIC μl/ml MBC μl/ml

Staphylococcus aureus ATCC 25923 9.38 12.5 4.69 6.25

Escherichia coli ATCC 12900 9.38 12.5 4.69 6.25

Salmonella enterica CIP 104220 18.75 25 18.75 25

Table 4 Inhibition zones (IZ) in millimeters after treatment of bacteria with AgNO3 and PLEs using
the Kirby–Bauer method.

Bacteria\Treatment AgNO3 (170 mg/l) OLE-AgNPs (50mg/l) RLE-AgNPs (45mg/l)

S. aureus 18 ± 0.6 mm 13 ± 0.9 mm 12 ± 0.4 mm

S. enterica 20 ± 0.9 mm 12 ± 0.1 mm 8 ± 0.6 mm

E. coli 21 ± 1.1 mm 9 ± 0.3 mm 10 ± 0.6 mm
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Table 5 Synthesis of silver nanoparticles and their antimicrobial activity using previous reported plant extracts as compared to Tollens’
method and current study.

Plant leaf
extracts/saccharides

Average size (nm) Zeta potential
(ζ) mV

Antimicrobial activity Reference

Cinnamon
zeylanicum

Spherical 31–40 nm
(TEM)

Negative zeta
potential

Growth inhibition study
MIC was 50 ml/ml and EC50 of
11 ± 1.72 ml/ml against E-coli strain
BL-21

Sathishkumar et al. (2009)

Mentha piperita 90 nm (SEM) NA Well diffusion method
The antibacterial activity of silver
nanoparticles against E. coli was
higher than that against S. aureus

Mubarak Ali et al. (2011)

Cacumen
Platycladi

Uniform spheroidal
18.4 ± 4.6 nm (TEM)

NA Agar well diffusion method and broth
medium methods

MIC and MBC were 1.4 and 27 ml/ml
against E. coli. MIC was 5.4 ml/ml
against S. aureus

Huang et al. (2011)

Mangosteen 35 nm (TEM) NA Disk diffusion method using 20 mg/ml
AgNPs

*IZ was 15 mm against E. coli and
20 mm against S. aureus

Veerasamy et al. (2011)

Rosmarinus
Officinalis

Stable particles 60 nm
(XRD)

NA Agar well diffusion method using two
mM AgNPs

*IZ was 25 mm against S. aureus,
24 mm against S. pneumoniae,
24 mm against C. albicans, and
22 mm against E. coli, K. pneumonia,
P. aeruginosa, and Proteus volgaris

Sulaiman et al. (2013)

Olive Mostly spherical
20–25 nm (TEM)

NA Agar well diffusion method
The AgNPs at 0.03–0.07 mg/ml
concentration significantly inhibited
bacterial growth against S. aureus,
P. aeruginosa and E. coli

Khalil et al. (2013)

Lantana camara 20 nm nearly spherical
(FESEM and TEM)

-36 Agar well diffusion method using
0.001M AgNPs

*IZ was three to seven mm against
Bacillus spp, Pseudomonas spp,
Staphylococcus spp, and E. coli.

Ajitha et al. (2015)

Aloe vera 70.7–192.02 nm (XRD–SEM) NA Agar well diffusion method using
0.1 mg/ml of AgNPs

*IZ was 1.5–3.9 cm against
S. epidermidis, and 1.4–3.9 cm
against P. aeruginosa

Microdilution method:
MIC was 10 ml/ml against
S. epidermidis

Tippayawat et al. (2016)

Olive Spherical and stable
45 ± 1.53 nm (SEM)

-43.15 ± 3.65 (DLS) Agar well diffusion method using
50 mg/ml of AgNPs

*IZ were 9, 13, and 12 mm for E-coli,
S. aureus and S. enterica, respectively

Microdilution method:
MIC was 9.38 ml/ml against E-coli
and S. aureus, and 18.75 ml/ml
against S. enterica

This study
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Our MBC results, however, were better than those reported by Huang et al. (2011), while
their MIC results were better than ours. In addition, Tippayawat et al. (2016) also studied
the antimicrobial activity of AgNP produced with Aloe vera plant extracts: the MIC
of their AgNPs against gram-positive Staphylococcus epidermidis was 10 ml/ml, which is
comparable with our MIC results. However, their AgNPs were fabricated at a higher
temperature (100 �C for 6 h and 200 �C for 12 h).

These results offer insights into the potential of scaling up the production of
AgNPs using leaf extracts from olive and rosemary plants for commercial implementation.

The antimicrobial mechanisms of AgNPs are still not completely understood.
One mechanism proposed is that AgNPs are able to interact with the bacterial
cell wall, alter its properties via decaying lipopolysaccharide molecules, and form “pits”
that increase wall permeability (Sondi & Salopek-Sondi, 2004). In addition,
antibacterial properties have been reported to be size-dependent, with higher
antimicrobial performance at smaller sizes of nanoparticles (Ajitha et al., 2015;
Martinez-Castanon et al., 2008).

CONCLUSIONS
In conclusion, AgNPs were successfully manufactured through the reduction of Tollens’
reagent in conjunction with OLE and RLE. Rapid formation time of AgNPs was achieved
in approximately 3 h. The synthesis conditions such as extract concentration,
temperature, and pH highly affected the synthesis. We were able to optimize the synthesis
to obtain a smaller AgNP core size, an approximately spherical shape, and stability.
The functional groups present in the RLE-AgNPs and OLE-AgNPs played a major role
in the production and stability of AgNPs.

The results showed that the synthesized AgNPs provided inhibition properties comparable
to the control solution of AgNO3, and better or equal to other reported biosynthesis

Table 5 (continued).

Plant leaf
extracts/saccharides

Average size (nm) Zeta potential
(ζ) mV

Antimicrobial activity Reference

Rosemary Spherical and stable
38 ± 2.71 (SEM)

-33.65 ± 2.88 (DLS) Agar well diffusion method using
45 mg/ml of AgNPs

*IZ were 10,12, and 8 mm for E-coli,
S. aureus, and S. enterica,
respectively

Microdilution method:
MIC was 4.69 ml/ml againt E-coli and
S. aureus; and 18.75 μl/ml against
S. enterica

This study

Tollens’ method 25–100 nm with narrow
size distributions

NA Standard dilution micro method
MIC and MBC were 13.5, 27, 3.38, and
13.5 mg/ml against Pseudomonas
aeruginosa using 108 mg/ml AgNPs
prepared by glucose, galactose,
maltose, and lactose, respectively

Panáček et al. (2006)

Note:
* IZ, Inhibition Zone.
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approaches. Finally, further investigations are recommended to analyze the antimicrobial
mechanisms and to explore the potential of scaling up the proposed methodology.
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