215 research outputs found

    NF-ÎșB c-Rel Is Crucial for the Regulatory T Cell Immune Checkpoint in Cancer

    Get PDF
    Regulatory T cells (Tregs) play a pivotal role in the inhibition of anti-tumor immune responses. Understanding the mechanisms governing Treg homeostasis may therefore be important for development of effective tumor immunotherapy. We have recently demonstrated a key role for the canonical nuclear factor ÎșB (NF-ÎșB) subunits, p65 and c-Rel, in Treg identity and function. In this report, we show that NF-ÎșB c-Rel ablation specifically impairs the generation and maintenance of the activated Treg (aTreg) subset, which is known to be enriched at sites of tumors. Using mouse models, we demonstrate that melanoma growth is drastically reduced in mice lacking c-Rel, but not p65, in Tregs. Moreover, chemical inhibition of c-Rel function delayed melanoma growth by impairing aTreg-mediated immunosuppression and potentiated the effects of anti-PD-1 immunotherapy. Our studies therefore establish inhibition of NF-ÎșB c-Rel as a viable therapeutic approach for enhancing checkpoint-targeting immunotherapy protocols

    ÎČ-cell-specific glucocorticoid reactivation attenuates inflammatory ÎČ-cell destruction

    Get PDF
    Progression and severity of type 1 diabetes is dependent upon inflammatory induction of nitric oxide production and consequent pancreatic ÎČ-cell damage. Glucocorticoids (GCs) are highly effective anti-inflammatory agents but have been precluded in type 1 diabetes and in islet transplantation protocols because they exacerbated insulin resistance and suppressed ÎČ-cell insulin secretion at the high-doses employed clinically. In contrast, physiological-range elevation of GC action within ÎČ-cells ameliorated lipotoxic ÎČ-cell failure in transgenic mice overexpressing the intracellular enzyme 11ÎČ-hydroxysteroid dehydrogenase type 1 (MIP-HSD1tg/+ mice). Here, we tested the hypothesis that elevated ÎČ-cell 11beta-HSD1 protects against the ÎČ-cell destruction elicited by streptozotocin (STZ), a toxin that dose-dependently mimics aspects of inflammatory and autoimmune ÎČ-cell destruction. MIP-HSD1tg/+ mice exhibited an episodic protection from the severe hyperglycemia caused by a single high dose of STZ associated with higher and sustained ÎČ-cell survival, maintained ÎČ-cell replicative potential, higher plasma and islet insulin levels, reduced inflammatory macrophage infiltration and increased anti-inflammatory T regulatory cell content. MIP-HSD1tg/+ mice also completely resisted mild hyperglycemia and insulitis induced by multiple low-dose STZ administration. In vitro, MIP-HSD1tg/+ islets exhibited attenuated STZ-induced nitric oxide production, an effect reversed with a specific 11beta-HSD1 inhibitor. GC regeneration selectively within ÎČ-cells protects against inflammatory ÎČ-cell destruction, suggesting therapeutic targeting of 11beta-HSD1 may ameliorate processes that exacerbate type 1 diabetes and that hinder islet transplantation

    Anti-TNF drives regulatory T cell expansion by paradoxically promoting membrane TNF-TNF-RII binding in rheumatoid arthritis

    Get PDF
    The interplay between inflammatory and regulatory pathways orchestrates an effective immune response that provides protection from pathogens while limiting injury to host tissue. Tumor necrosis factor (TNF) is a pivotal inflammatory cytokine, but there is conflicting evidence as to whether it boosts or inhibits regulatory T cells (T reg cells). In this study, we show that the therapeutic anti-TNF antibody adalimumab, but not the soluble TNF receptor etanercept, paradoxically promoted the interaction between monocytes and T reg cells isolated from patients with rheumatoid arthritis (RA). Adalimumab bound to monocyte membrane TNF from RA patients and unexpectedly enhanced its expression and its binding to TNF-RII expressed on T reg cells. As a consequence, adalimumab expanded functional Foxp3(+) T reg cells equipped to suppress Th17 cells through an IL-2/STAT5-dependent mechanism. Our data not only highlight the beneficial effect of membrane TNF on T reg cell numbers during chronic inflammation, but in addition reveal how a therapeutic antibody that is thought to act by simply blocking its target can enhance the regulatory properties of this proinflammatory cytokine

    Systemic IL-2/anti-IL-2Ab complex combined with sublingual immunotherapy suppresses experimental food allergy in mice through induction of mucosal regulatory T cells

    Get PDF
    Therapeutic tolerance restoration has been proven to modify food allergy in patients and animal models and although sublingual immunotherapy (SLIT) has showed promise, combined therapy may be necessary to achieve a strong and long‐term tolerance. In this work, we combined SLIT with systemic administration of IL‐2 associated with an anti‐IL‐2 monoclonal antibody (IL‐2/anti‐IL‐2Ab complex or IL‐2C) to reverse the IgE‐mediated experimental allergy. Balb/c mice were sensitized with cholera toxin and milk proteins and orally challenged with allergen to elicit hypersensitivity reactions. Then, allergic mice were treated with a sublingual administration of very low amounts of milk proteins combined with intraperitoneal injection of low doses of IL‐2C. The animals were next re‐exposed to allergens and mucosal as well as systemic immunological parameters were assessed in vivo and in vitro. The treatment reduced serum specific IgE, IL‐5 secretion by spleen cells and increased IL‐10 and TGF‐ÎČ in the lamina propria of buccal and duodenal mucosa. We found an augmented frequency of IL‐10‐secreting CD4+CD25+Foxp3+ regulatory T cells (Treg) in the submaxilar lymph nodes and buccal lamina propria. Tregs were sorted, characterized and adoptively transferred to naĂŻve mice, which were subsequently sensitized. No allergy was experienced in these mice and we encouragingly discovered a faster and more efficient tolerance induction with the combined therapy compared with SLIT. The combination of two therapeutic strategies rendered Treg‐mediated tolerance more efficient compared to individual treatments and reversed the established IgE‐mediated food allergy. This approach highlights the ability of IL‐2C to expand Tregs, and it may represent a promising disease‐modifying therapy for managing food allergyInstituto de Estudios InmunolĂłgicos y FisiopatolĂłgicosConsejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnica

    An NF-ÎșB Transcription-Factor-Dependent Lineage-Specific Transcriptional Program Promotes Regulatory T Cell Identity and Function

    Get PDF
    Both conventional T (Tconv) cells and regulatory T (Treg) cells are activated through ligation of the T cell receptor (TCR) complex, leading to the induction of the transcription factor NF-ÎșB. In Tconv cells, NF-ÎșB regulates expression of genes essential for T cell activation, proliferation, and function. However the role of NF-ÎșB in Treg function remains unclear. We conditionally deleted canonical NF-ÎșB members p65 and c-Rel in developing and mature Treg cells and found they have unique but partially redundant roles. c-Rel was critical for thymic Treg development while p65 was essential for mature Treg identity and maintenance of immune tolerance. Transcriptome and NF-ÎșB p65 binding analyses demonstrated a lineage specific, NF-ÎșB-dependent transcriptional program, enabled by enhanced chromatin accessibility. These dual roles of canonical NF-ÎșB in Tconv and Treg cells highlight the functional plasticity of the NF-ÎșB signaling pathway and underscores the need for more selective strategies to therapeutically target NF-ÎșB

    Phenotypic, Functional, and Gene Expression Profiling of Peripheral CD45RA+ and CD45RO+ CD4+CD25+CD127<sup>low</sup> Treg Cells in Patients with Chronic Rheumatoid Arthritis

    Get PDF
    OBJECTIVE: Conflicting evidence exists regarding the suppressive capacity of Treg cells in the peripheral blood (PB) of patients with rheumatoid arthritis (RA). The aim of this study was to determine whether Treg cells are intrinsically defective in RA. METHODS: Using a range of assays on PB samples from patients with chronic RA and healthy controls, CD3+CD4+CD25+CD127(low) Treg cells from the CD45RO+ or CD45RA+ T cell compartments were analyzed for phenotype, cytokine expression (ex vivo and after in vitro stimulation), suppression of Teff cell proliferation and cytokine production, suppression of monocyte-derived cytokine/chemokine production, and gene expression profiles. RESULTS: No differences between RA patients and healthy controls were observed with regard to the frequency of Treg cells, ex vivo phenotype (CD4, CD25, CD127, CD39, or CD161), or proinflammatory cytokine profile (interleukin-17 [IL-17], interferon-Îł [IFNÎł], or tumor necrosis factor [TNF]). FoxP3 expression was slightly increased in Treg cells from RA patients. The ability of Treg cells to suppress the proliferation of T cells or the production of cytokines (IFNÎł or TNF) upon coculture with autologous CD45RO+ Teff cells and monocytes was not significantly different between RA patients and healthy controls. In PB samples from some RA patients, CD45RO+ Treg cells showed an impaired ability to suppress the production of certain cytokines/chemokines (IL-1ÎČ, IL-1 receptor antagonist, IL-7, CCL3, or CCL4) by autologous lipopolysaccharide-activated monocytes. However, this was not observed in all patients, and other cytokines/chemokines (TNF, IL-6, IL-8, IL-12, IL-15, or CCL5) were generally suppressed. Finally, gene expression profiling of CD45RA+ or CD45RO+ Treg cells from the PB revealed no statistically significant differences between RA patients and healthy controls. CONCLUSION: Our findings indicate that there is no global defect in either CD45RO+ or CD45RA+ Treg cells in the PB of patients with chronic RA

    Interleukin-7 Influences FOXP3+CD4+ Regulatory T Cells Peripheral Homeostasis

    Get PDF
    Mechanisms governing peripheral CD4+ FOXP3+ regulatory T cells (Treg) survival and homeostasis are multiple suggesting tight and complex regulation of regulatory T cells homeostasis. Some specific factors, such as TGF-ÎČ, interleukin-2 (IL-2) and B7 costimulatory molecules have been identified as essentials for maintenance of the peripheral Treg compartment. Conversely, Treg dependency upon classical T cell homeostatic factors such as IL-7 is still unclear. In this work, we formally investigated the role of IL-7 in Treg homeostasis in vivo in murine models. We demonstrated that IL-7 availability regulated the size of peripheral Treg cell pool and thus paralleled the impact of IL-7 on conventional T cell pool. Moreover, we showed that IL-7 administration increased Treg cell numbers by inducing thymic-independent Treg peripheral expansion. Importantly the impact of IL-7 on Treg expansion was detected whether conventional T cells were present or absent as IL-7 directly participates to the peripheral expansion of Treg after adoptive transfer into lymphopenic hosts. Our results definitively identify IL-7 as a central factor contributing to Treg peripheral homeostasis, thus reassembling Treg to other T cell subsets in respect of their need for IL-7 for their peripheral maintenance

    ICOS regulates the generation and function of human CD4+ Treg in a CTLA-4 dependent manner

    Get PDF
    Inducible co-stimulator (ICOS) is a member of CD28/Cytotoxic T-lymphocyte Antigen-4 (CTLA-4) family and broadly expressed in activated CD4+ T cells and induced regulatory CD4+ T cells (CD4+ iTreg). ICOS-related signal pathway could be activated by the interaction between ICOS and its ligand (ICOSL). In our previous work, we established a cost-effective system to generate a novel human allo-antigen specific CD4hi Treg by co-culturing their naïve precursors with allogeneic CD40-activated B cells in vitro. Here we investigate the role of ICOS in the generation and function of CD4hi Treg by interrupting ICOS-ICOSL interaction with ICOS-Ig. It is found that blockade of ICOS-ICOSL interaction impairs the induction and expansion of CD4hi Treg induced by allogeneic CD40-activated B cells. More importantly, CD4hi Treg induced with the addition of ICOS-Ig exhibits decreased suppressive capacity on alloantigen-specific responses. Dysfunction of CD4hi Treg induced with ICOS-Ig is accompanied with its decreased exocytosis and surface CTLA-4 expression. Through inhibiting endocytosis with E64 and pepstatin A, surface CTLA-4 expression and suppressive functions of induced CD4hi Treg could be partly reversed. Conclusively, our results demonstrate the beneficial role of ICOS-ICOSL signal pathway in the generation and function of CD4hi Treg and uncover a novel relationship between ICOS and CTLA-4. © 2013 zheng et al.published_or_final_versio
    • 

    corecore