288 research outputs found
Removing systematics from the CoRoT light curves: I. Magnitude-Dependent Zero Point
This paper presents an analysis that searched for systematic effects within
the CoRoT exoplanet field light curves. The analysis identified a systematic
effect that modified the zero point of most CoRoT exposures as a function of
stellar magnitude. We could find this effect only after preparing a set of
learning light curves that were relatively free of stellar and instrumental
noise. Correcting for this effect, rejecting outliers that appear in almost
every exposure, and applying SysRem, reduced the stellar RMS by about 20 %,
without attenuating transit signals.Comment: Accepted for publication in Astronomy and Astrophysic
Plasma Tau and Neurofilament Light in Frontotemporal Lobar Degeneration and Alzheimer Disease
Objective: To test the hypothesis that plasma total tau (t-tau) and neurofilament light chain (NfL) concentrations may have a differential role in the study of frontotemporal lobar degeneration syndromes (FTLD-S) and clinically diagnosed Alzheimer disease syndromes (AD-S), we determined their diagnostic and prognostic value in FTLD-S and AD-S and their sensitivity to pathologic diagnoses.
Methods: We measured plasma t-tau and NfL with the Simoa platform in 265 participants: 167 FTLD-S, 43 AD-S, and 55 healthy controls (HC), including 82 pathology-proven cases (50 FTLD-tau, 18 FTLD-TDP, 2 FTLD-FUS, and 12 AD) and 98 participants with amyloid PET. We compared cross-sectional and longitudinal biomarker concentrations between groups, their correlation with clinical measures of disease severity, progression, and survival, and cortical thickness.
Results: Plasma NfL, but not plasma t-tau, discriminated FTLD-S from HC and AD-S from HC. Both plasma NfL and t-tau were poor discriminators between FLTD-S and AD-S. In pathology-confirmed cases, plasma NfL was higher in FTLD than AD and in FTLD-TDP compared to FTLD-tau, after accounting for age and disease severity. Plasma NfL, but not plasma t-tau, predicted clinical decline and survival and correlated with regional cortical thickness in both FTLD-S and AD-S. The combination of plasma NfL with plasma t-tau did not outperform plasma NfL alone.
Conclusion: Plasma NfL is superior to plasma t-tau for the diagnosis and prediction of clinical progression of FTLD-S and AD-S.
Classification of Evidence: This study provides Class III evidence that plasma NfL has superior diagnostic and prognostic performance vs plasma t-tau in FTLD and AD
The Value of Rents: Global Commodity Chains and Small Cocoa Producers in Ecuador
Drawing on the Marxian theory of ground rent this paper develops an analysis of “global commodity chains” (GCC) with agrarian roots. There is an acknowledgement that the concentrated downstream governance of primary commodity based GCC has created a set of ‘asymmetrical’ power relations which blocks the transmission of value upstream towards small producers. This paper argues that this research under-specifies what is meant by value and rent and in doing so marginalises the analysis of value production before its journey through inter-firm relations. We demonstrate the importance of theorising the value constitution of commodities produced on the land and the forces that contest the payment of ground rent and thereby shape the geography of GCC. Based on empirical research conducted around Ecuador’s ‘post-neoliberal’ cocoa re-activation plan, we identify the class politics and production mechanisms through which value and rent escapes the hands of a stratified network of small owner producers
Recommended from our members
Comorbid neuropathology and atypical presentation of Alzheimer's disease
IntroductionAlzheimer's disease (AD) neuropathological changes present with amnestic and nonamnestic (atypical) syndromes. The contribution of comorbid neuropathology as a substratum of atypical expression of AD remains under investigated.MethodsWe examined whether atypical AD exhibited increased comorbid neuropathology compared to typical AD and if such neuropathologies contributed to the accelerated clinical decline in atypical AD.ResultsWe examined 60 atypical and 101 typical AD clinicopathological cases. The number of comorbid pathologies was similar between the groups (p = 0.09). Argyrophilic grain disease was associated with atypical presentation (p = 0.008) after accounting for sex, age of onset, and disease duration. Vascular brain injury was more common in typical AD (p = 0.022). Atypical cases had a steeper Mini-Mental Status Examination (MMSE) decline over time (p = 0.033).DiscussionComorbid neuropathological changes are unlikely to contribute to atypical AD presentation and the steeper cognitive decline seen in this cohort.HighlightsAutopsy cohort of 60 atypical and 101 typical AD; does comorbid pathology explain atypical presentation?Atypical versus Typical AD: No significant differences in comorbid neuropathologies were found (p = 0.09).Argyrophilic Grain Disease Association: significantly correlates with atypical AD presentations, suggesting a unique neuropathological pattern (p = 0.008).Vascular Brain Injury Prevalence: Vascular brain injury is more common in typical AD than in atypical AD (p = 0.022).Cognitive Decline in Atypical AD: Atypical AD patients experience a steeper cognitive decline measured by MMSE than those with typical AD despite lacking more comorbid neuropathology, highlighting the severity of atypical AD pathogenesis (p = 0.033)
A Novel Model of Mixed Vascular Dementia Incorporating Hypertension in a Rat Model of Alzheimer's Disease.
Alzheimer's disease (AD) and mixed dementia (MxD) comprise the majority of dementia cases in the growing global aging population. MxD describes the coexistence of AD pathology with vascular pathology, including cerebral small vessel disease (SVD). Cardiovascular disease increases risk for AD and MxD, but mechanistic synergisms between the coexisting pathologies affecting dementia risk, progression and the ultimate clinical manifestations remain elusive. To explore the additive or synergistic interactions between AD and chronic hypertension, we developed a rat model of MxD, produced by breeding APPswe/PS1ΔE9 transgenes into the stroke-prone spontaneously hypertensive rat (SHRSP) background, resulting in the SHRSP/FAD model and three control groups (FAD, SHRSP and non-hypertensive WKY rats, n = 8-11, both sexes, 16-18 months of age). After behavioral testing, rats were euthanized, and tissue assessed for vascular, neuroinflammatory and AD pathology. Hypertension was preserved in the SHRSP/FAD cross. Results showed that SHRSP increased FAD-dependent neuroinflammation (microglia and astrocytes) and tau pathology, but plaque pathology changes were subtle, including fewer plaques with compact cores and slightly reduced plaque burden. Evidence for vascular pathology included a change in the distribution of astrocytic end-foot protein aquaporin-4, normally distributed in microvessels, but in SHRSP/FAD rats largely dissociated from vessels, appearing disorganized or redistributed into neuropil. Other evidence of SVD-like pathology included increased collagen IV staining in cerebral vessels and PECAM1 levels. We identified a plasma biomarker in SHRSP/FAD rats that was the only group to show increased Aqp-4 in plasma exosomes. Evidence of neuron damage in SHRSP/FAD rats included increased caspase-cleaved actin, loss of myelin and reduced calbindin staining in neurons. Further, there were mitochondrial deficits specific to SHRSP/FAD, notably the loss of complex II, accompanying FAD-dependent loss of mitochondrial complex I. Cognitive deficits exhibited by FAD rats were not exacerbated by the introduction of the SHRSP phenotype, nor was the hyperactivity phenotype associated with SHRSP altered by the FAD transgene. This novel rat model of MxD, encompassing an amyloidogenic transgene with a hypertensive phenotype, exhibits several features associated with human vascular or "mixed" dementia and may be a useful tool in delineating the pathophysiology of MxD and development of therapeutics
Diagnostic Accuracy of Magnetic Resonance Imaging Measures of Brain Atrophy Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Degeneration
The accurate diagnosis of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) is hampered by imperfect clinical-pathological correlations.To assess and compare the diagnostic value of the magnetic resonance parkinsonism index (MRPI) and other magnetic resonance imaging-based measures of cerebral atrophy to differentiate between PSP, CBD, and other neurodegenerative diseases.This prospective diagnostic study included participants with 4-repeat tauopathies (4RT), PSP, CBD, other neurodegenerative diseases and available MRI who appeared in the University of California, San Francisco, Memory and Aging Center database. Data were collected from October 27, 1994, to September 29, 2019. Data were analyzed from March 1 to September 14, 2021.The main outcome of this study was the neuropathological diagnosis of PSP or CBD. The clinical diagnosis at the time of the MRI acquisition was noted. The imaging measures included the MRPI, cortical thickness, subcortical volumes, including the midbrain, pons, and superior cerebellar peduncle volumes. Multinomial logistic regression models (MLRM) combining different cortical and subcortical regions were defined to discriminate between PSP, CBD, and other pathologies. The areas under the receiver operating characteristic curves (AUROC) and cutoffs were calculated to differentiate between PSP, CBD, and other diseases.Of the 326 included participants, 176 (54%) were male, and the mean (SD) age at MRI was 64.1 (8.0) years. The MRPI showed good diagnostic accuracy for the differentiation between PSP and all other pathologies (accuracy, 87%; AUROC, 0.90; 95% CI, 0.86-0.95) and between 4RT and other pathologies (accuracy, 80%; AUROC, 0.82; 95% CI, 0.76-0.87), but did not allow the discrimination of participants with CBD. Its diagnostic accuracy was lower in the subgroup of patients without the canonical PSP-Richardson syndrome (PSP-RS) or probable corticobasal syndrome (CBS) at MRI. MLRM combining cortical and subcortical measurements showed the highest accuracy for the differentiation between PSP and other pathologies (accuracy, 95%; AUROC, 0.98; 95% CI, 0.97-0.99), CBD and other pathologies (accuracy, 83%; AUROC, 0.86; 95% CI, 0.81-0.91), 4RT and other pathologies (accuracy, 89%; AUROC, 0.94; 95% CI, 0.92-0.97), and PSP and CBD (accuracy, 91%; AUROC, 0.95; 95% CI, 0.91-0.99), even in participants without PSP-RS or CBS at MRI.In this study, the combination of widely available cortical and subcortical measures of atrophy on MRI discriminated between PSP, CBD, and other pathologies and could be used to support the diagnosis of 4RT in clinical practice
Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer's disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study
Background: Plasma tau phosphorylated at threonine 217 (p-tau217) and plasma tau phosphorylated at threonine 181 (p-tau181) are associated with Alzheimer's disease tau pathology. We compared the diagnostic value of both biomarkers in cognitively unimpaired participants and patients with a clinical diagnosis of mild cognitive impairment, Alzheimer's disease syndromes, or frontotemporal lobar degeneration (FTLD) syndromes. /
Methods: In this retrospective multicohort diagnostic performance study, we analysed plasma samples, obtained from patients aged 18–99 years old who had been diagnosed with Alzheimer's disease syndromes (Alzheimer's disease dementia, logopenic variant primary progressive aphasia, or posterior cortical atrophy), FTLD syndromes (corticobasal syndrome, progressive supranuclear palsy, behavioural variant frontotemporal dementia, non-fluent variant primary progressive aphasia, or semantic variant primary progressive aphasia), or mild cognitive impairment; the participants were from the University of California San Francisco (UCSF) Memory and Aging Center, San Francisco, CA, USA, and the Advancing Research and Treatment for Frontotemporal Lobar Degeneration Consortium (ARTFL; 17 sites in the USA and two in Canada). Participants from both cohorts were carefully characterised, including assessments of CSF p-tau181, amyloid-PET or tau-PET (or both), and clinical and cognitive evaluations. Plasma p-tau181 and p-tau217 were measured using electrochemiluminescence-based assays, which differed only in the biotinylated antibody epitope specificity. Receiver operating characteristic analyses were used to determine diagnostic accuracy of both plasma markers using clinical diagnosis, neuropathological findings, and amyloid-PET and tau-PET measures as gold standards. Difference between two area under the curve (AUC) analyses were tested with the Delong test. /
Findings: Data were collected from 593 participants (443 from UCSF and 150 from ARTFL, mean age 64 years [SD 13], 294 [50%] women) between July 1 and Nov 30, 2020. Plasma p-tau217 and p-tau181 were correlated (r=0·90, p<0·0001). Both p-tau217 and p-tau181 concentrations were increased in people with Alzheimer's disease syndromes (n=75, mean age 65 years [SD 10]) relative to cognitively unimpaired controls (n=118, mean age 61 years [SD 18]; AUC=0·98 [95% CI 0·95–1·00] for p-tau217, AUC=0·97 [0·94–0·99] for p-tau181; pdiff=0·31) and in pathology-confirmed Alzheimer's disease (n=15, mean age 73 years [SD 12]) versus pathologically confirmed FTLD (n=68, mean age 67 years [SD 8]; AUC=0·96 [0·92–1·00] for p-tau217, AUC=0·91 [0·82–1·00] for p-tau181; pdiff=0·22). P-tau217 outperformed p-tau181 in differentiating patients with Alzheimer's disease syndromes (n=75) from those with FTLD syndromes (n=274, mean age 67 years [SD 9]; AUC=0·93 [0·91–0·96] for p-tau217, AUC=0·91 [0·88–0·94] for p-tau181; pdiff=0·01). P-tau217 was a stronger indicator of amyloid-PET positivity (n=146, AUC=0·91 [0·88–0·94]) than was p-tau181 (n=214, AUC=0·89 [0·86–0·93]; pdiff=0·049). Tau-PET binding in the temporal cortex was more strongly associated with p-tau217 than p-tau181 (r=0·80 vs r=0·72; pdiff<0·0001, n=230). /
Interpretation: Both p-tau217 and p-tau181 had excellent diagnostic performance for differentiating patients with Alzheimer's disease syndromes from other neurodegenerative disorders. There was some evidence in favour of p-tau217 compared with p-tau181 for differential diagnosis of Alzheimer's disease syndromes versus FTLD syndromes, as an indication of amyloid-PET-positivity, and for stronger correlations with tau-PET signal. Pending replication in independent, diverse, and older cohorts, plasma p-tau217 and p-tau181 could be useful screening tools to identify individuals with underlying amyloid and Alzheimer's disease tau pathology. /
Funding: US National Institutes of Health, State of California Department of Health Services, Rainwater Charitable Foundation, Michael J Fox foundation, Association for Frontotemporal Degeneration, Alzheimer's Association
Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration
With the potential development of new disease-modifying Alzheimer’s disease (AD) therapies, simple, widely available screening tests are needed to identify which individuals, who are experiencing symptoms of cognitive or behavioral decline, should be further evaluated for initiation of treatment. A blood-based test for AD would be a less invasive and less expensive screening tool than the currently approved cerebrospinal fluid or amyloid β positron emission tomography (PET) diagnostic tests. We examined whether plasma tau phosphorylated at residue 181 (pTau181) could differentiate between clinically diagnosed or autopsy-confirmed AD and frontotemporal lobar degeneration. Plasma pTau181 concentrations were increased by 3.5-fold in AD compared to controls and differentiated AD from both clinically diagnosed (receiver operating characteristic area under the curve of 0.894) and autopsy-confirmed frontotemporal lobar degeneration (area under the curve of 0.878). Plasma pTau181 identified individuals who were amyloid β-PET-positive regardless of clinical diagnosis and correlated with cortical tau protein deposition measured by 18F-flortaucipir PET. Plasma pTau181 may be useful to screen for tau pathology associated with AD
Group motivational intervention in overweight/obese patients in primary prevention of cardiovascular disease in the primary healthcare area
Background The global mortality caused by cardiovascular disease increases with weight. The Framingham study showed that obesity is a cardiovascular risk factor independent of other risks such as type 2 diabetes mellitus, dyslipidemia and smoking. Moreover, the main problem in the management of weight-loss is its maintenance, if it is achieved. We have designed a study to determine whether a group motivational intervention, together with current clinical practice, is more efficient than the latter alone in the treatment of overweight and obesity, for initial weight loss and essentially to achieve maintenance of the weight achieved; and, secondly, to know if this intervention is more effective for reducing cardiovascular risk factors associated with overweight and obesity. Methods This 26-month follow up multi-centre trial, will include 1200 overweight/obese patients. Random assignment of the intervention by Basic Health Areas (BHA): two geographically separate groups have been created, one of which receives group motivational intervention (group intervention), delivered by a nurse trained by an expert phsychologist, in 32 group sessions, 1 to 12 fortnightly, and 13 to 32, monthly, on top of their standard program of diet, exercise, and the other (control group), receiving the usual follow up, with regular visits every 3 months. Discussion By addressing currently unanswered questions regarding the maintenance in weight loss in obesity/overweight, upon the expected completion of participant follow-up in 2012, the IMOAP trial should document, for the first time, the benefits of a motivational intervention as a treatment tool of weight loss in a primary care setting
Twenty-first century brain banking. Processing brains for research: the Columbia University methods
Carefully categorized postmortem human brains are crucial for research. The lack of generally accepted methods for processing human postmortem brains for research persists. Thus, brain banking is essential; however, it cannot be achieved at the cost of the teaching mission of the academic institution by routing brains away from residency programs, particularly when the autopsy rate is steadily decreasing. A consensus must be reached whereby a brain can be utilizable for diagnosis, research, and teaching. The best diagnostic categorization possible must be secured and the yield of samples for basic investigation maximized. This report focuses on integrated, novel methods currently applied at the New York Brain Bank, Columbia University, New York, which are designed to reach accurate neuropathological diagnosis, optimize the yield of samples, and process fresh-frozen samples suitable for a wide range of modern investigations. The brains donated for research are processed as soon as possible after death. The prosector must have a good command of the neuroanatomy, neuropathology, and the protocol. One half of each brain is immersed in formalin for performing the thorough neuropathologic evaluation, which is combined with the teaching task. The contralateral half is extensively dissected at the fresh state. The anatomical origin of each sample is recorded using the map of Brodmann for the cortical samples. The samples are frozen at −160°C, barcode labeled, and ready for immediate disbursement once categorized diagnostically. A rigorous organization of freezer space, coupled to an electronic tracking system with its attached software, fosters efficient access for retrieval within minutes of any specific frozen samples in storage. This report describes how this achievement is feasible with emphasis on the actual processing of brains donated for research
- …