14 research outputs found

    Investigating microbial diversity and UV radiation impact at the high-altitude lake Aguas Calientes, Chile

    Get PDF
    The High-Lakes Project is funded by the NAI and explores the highest perennial volcanic lakes on Earth in the Bolivian and Chilean Andes, including several lakes ∼6,000 m elevation. These lakes represent an opportunity to study the evolution of microbial organisms in relatively shallow waters not providing substantial protection against UV radiation. Aguas Calientes (5,870 m) was investigated (November 2006) and samples of water and sediment collected at 1, 3, 5, and 10 cm depth. An Eldonet UV dosimeter positioned on the shore records UV radiation and temperature, and is logging data year round. A UV SolarLight sensor allowed acquisition of point measurements in all channels at the time of the sampling. UVA, UVB, and PAR peaks between 11:00 am and 1:00 pm reached 7.7 mW/cm2, 48.5 μW/cm2, and 511 W/m 2, respectively. The chemical composition of the water sample was analyzed. DNA was extracted and DGGE analyses with bacterial and archaeal 16S fragments were performed to describe microbial diversity. Antibiotic resistances were established previously in similar environments in Argentine Andean wetlands. In order to determine these resistances in our samples, they were inoculated onto LB and R2A media and onto R2A medium containing either chloramphenicol, ampicillin or tetracycline. Bacterial was higher than archeal cell number determined by RT-PCR in all the samples, reaching maximum total values of 5×105 cell mL-1. DGGE results from these samples and Licancabur summit lake (5,916 m) samples were also compared. Eight antibiotic-resistant Gram negative strains have been isolated with distinct resistance patterns.Fil: Escudero, Lorena. Centro de Investigación Científica y Tecnológica para la Minería; ArgentinaFil: Chong, Guillermo. Centro de Investigación Científica y Tecnológica para la Minería; ArgentinaFil: Demergasso, Cecilia. Universidad Católica de Chile; ChileFil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Cabrol, Nathalie A.. Nasa Ames Research Center; Estados UnidosFil: Grin, Edmond. Nasa Ames Research Center; Estados UnidosFil: Minkley Jr., Edwin. University of Carnegie Mellon; Estados UnidosFil: Yu, Youngeob. University of Carnegie Mellon; Estados Unido

    Exploring Gusev Crater with spirit: Review of science objectives and testable hypotheses

    Get PDF
    Gusev Crater was selected as the landing site for the Mars Exploration Rover (MER) Spirit mission. Located at the outlet of Ma'adim Vallis and 250 km south of the volcano Apollinaris Patera, Gusev is an outstanding site to achieve the goals of the MER mission. The crater could have collected sediments from a variety of sources during its 3.9 Ga history, including fluvial, lacustrine, volcanic, glacial, impact, regional and local aeolian, and global air falls. It is a unique site to investigate the past history of water on Mars, climate and geological changes, and the potential habitability of the planet, which are central science objectives of the MER mission. Because of its complex history and potential diversity, Gusev will allow the testing of a large spectrum of hypotheses with the complete suite of MER instruments. Evidence consistent with long-lived lake episodes exist in the landing ellipse area. They might offer a unique opportunity to study, for the first time, Martian aqueous sediments and minerals formed in situ in their geological context. We review the geological history and diversity of the landing site, the science hypotheses that can be tested during the MER mission, and the relevance of Gusev to the MER mission objectives and payload

    Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven

    Get PDF
    A total of 3140 individual particles were examined in 31 soils along Spirit’s traverse. Their size, shape, and texture were quantified and classified. They represent a unique record of 3 years of sedimentologic exploration from landing to sol 1085 covering the Plains Unit to Winter Haven where Spirit spent the Martian winter of 2006. Samples in the Plains Unit and Columbia Hills appear as reflecting contrasting textural domains. One is heterogeneous, with a continuum of angular-to-round particles of fine sand to pebble sizes that are generally dust covered and locally cemented in place. The second shows the effect of a dominant and ongoing dynamic aeolian process that redistributes a uniform population of medium-size sand. The texture of particles observed in the samples at Gusev Crater results from volcanic, aeolian, impact, and water-related processes

    From habitability to life on Mars

    No full text

    Lakes on Mars

    No full text
    On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find criti

    Recent aqueous environments in Martian impact craters: an astrobiological perspective

    No full text
    The discovery of gullies and debris aprons raises the question of the existence of aqueousenvironments on Mars in recent geological times and its astrobiological implications. Three cases of such environments are surveyed at MOC high resolution in the E-Gorgonum chaos and Newton and Hale craters. The regional setting of these craters suggests that the mechanisms of aquifer destabilization, flow discharge, and gully formation in these three cases result from local geological triggers that can include impact cratering, and tectonic processes, rather than climate or insolation factor. We take as a working hypothesis that microbial life appeared on Mars in ancient geological times, probably in a geothermal environment but potentially evolving via infrared detection systems to give photosynthetic communities under the selective pressure of energetic solar radiation. We hypothesize that some microbial communities could have survived underground in either dormant or active state, or that their biomolecules could be preserved either frozen or desiccated in the subsurface beneath the upper oxidized zone. We assess the known environmental constraints for life and what type of potential habitats are provided in these three craters by aquifer discharges using comparison with terrestrial analogues and their associated microbial communities. These environments include: (1) the release of water on a dry crater floor in E-Gorgonum and the possibility for microorganisms and preserved biomolecules to be flushed out and mixed in with the sediment exposed at the surface; (2) the evidence of a recent lacustrine episode in the Newton crater with analogy to Antarctic Dry Valley lakes; (3) the exposure on the floor of Hale crater of material from a regional subsurface that is likely to have retained traces of one of the oldest martian bodies of water recognized to date (Parker et al. 2000) in the Argyre basin. We show how the water in Argyre (∼3.8 billion years ago (Gya) was likely to have been alterated by hydrothermal processes and how the subsequent formation of the 150-km Hale crater on the northern ring of Argyre generated hydrothermal pumping. This accounts for the anomalously high location of the springs on the crater crests today with respect to the rest of the regional subsurface distribution. Finally, we envision current impact cratering as a factor for destabilizing aquifers on Mars today, thus creating new environments. We analyze the implications of impacts for two geological types of rock units that could harbor traces of life. As a result, we compare the potential of astrobiological exploration of crater floors, rims, and ejecta on future missions to Mars

    Brines in seepage channels as eluants for subsurface relict biomolecules on Mars?

    No full text
    Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images result from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (~3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80°C in the interstices of shallow hypersaline soils and at -50°C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50°C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers

    An (U-Th)/He age for the small Monturaqui impact structure, Chile

    No full text
    Single-crystal (U-Th)/He dating of 32 apatite and zircon crystals from an impact breccia yielded a weighted mean age of 663 ± 28 ka (n = 3; 4.2 % 2σ uncertainties) for the Monturaqui impact structure, Chile. This ∼350 m diameter simple crater preserves a small volume of impactite consisting of polymict breccias that are dominated by reworked target rock clasts. The small size, young age and limited availability of melt material for traditional geochronological techniques made Monturaqui a good test to define the lower limits of the (U-Th)/He system to successfully date impact events. Numerical modelling of 4He loss in apatite and zircon crystals shows that, for even small craters such as Monturaqui, the short-lived compressional stage and shock metamorphic stage can account for the observed partial to full resetting of (U-Th)/He ages in accessory minerals. Despite the distinctly different 4He diffusion parameters of apatite and zircon, the 2σ-overlapping youngest ages are recorded in both populations of minerals, which supports the inference that the weighted mean of the youngest (U-Th)/He population is the age of formation of this impact structure
    corecore