14,891 research outputs found

    Experimental analysis of multistatic multiband radar signatures of wind turbines

    Get PDF
    This study presents the analysis of recent experimental data acquired using two radar systems at S-band and X-band to measure simultaneous monostatic and bistatic signatures of operational wind turbines near Shrivenham, UK. Bistatic and multistatic radars are a potential approach to mitigate the adverse effects of wind farm clutter on the performance of radar systems, which is a well-known problem for air traffic control and air defence radar. This analysis compares the simultaneous monostatic and bistatic micro-Doppler signatures of two operational turbines and investigates the key differences at bistatic angles up to 23°. The variations of the signature with different polarisations, namely vertical transmitted and vertical received and horizontal transmitted and horizontal received, are also discussed

    Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    Get PDF
    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit

    On spurious steady-state solutions of explicit Runge-Kutta schemes

    Get PDF
    The bifurcation diagram associated with the logistic equation v sup n+1 = av sup n (1-v sup n) is by now well known, as is its equivalence to solving the ordinary differential equation u prime = alpha u (1-u) by the explicit Euler difference scheme. It has also been noted by Iserles that other popular difference schemes may not only exhibit period doubling and chaotic phenomena but also possess spurious fixed points. Runge-Kutta schemes applied to both the equation u prime = alpha u (1-u) and the cubic equation u prime = alpha u (1-u)(b-u) were studied computationally and analytically and their behavior was contrasted with the explicit Euler scheme. Their spurious fixed points and periodic orbits were noted. In particular, it was observed that these may appear below the linearized stability limits of the scheme and, consequently, computation may lead to erroneous results

    The Nature and Location of Quantum Information

    Get PDF
    Quantum information is defined by applying the concepts of ordinary (Shannon) information theory to a quantum sample space consisting of a single framework or consistent family. A classical analogy for a spin-half particle and other arguments show that the infinite amount of information needed to specify a precise vector in its Hilbert space is not a measure of the information carried by a quantum entity with a dd-dimensional Hilbert space; the latter is, instead, bounded by log d bits (1 bit per qubit). The two bits of information transmitted in dense coding are located not in one but in the correlation between two qubits, consistent with this bound. A quantum channel can be thought of as a "structure" or collection of frameworks, and the physical location of the information in the individual frameworks can be used to identify the location of the channel. Analysis of a quantum circuit used as a model of teleportation shows that the location of the channel depends upon which structure is employed; for ordinary teleportation it is not (contrary to Deutsch and Hayden) present in the two bits resulting from the Bell-basis measurement, but in correlations of these with a distant qubit. In neither teleportation nor dense coding does information travel backwards in time, nor is it transmitted by nonlocal (superluminal) influences. It is (tentatively) proposed that all aspects of quantum information can in principle be understood in terms of the (basically classical) behavior of information in a particular framework, along with the framework dependence of this information.Comment: Latex 29 pages, uses PSTricks for figure

    Zero-energy states in graphene quantum dots and rings

    Get PDF
    We present exact analytical zero-energy solutions for a class of smooth decaying potentials, showing that the full confinement of charge carriers in electrostatic potentials in graphene quantum dots and rings is indeed possible without recourse to magnetic fields. These exact solutions allow us to draw conclusions on the general requirements for the potential to support fully confined states, including a critical value of the potential strength and spatial extent.Comment: 8 pages, 3 figures, references added, typos corrected, discussion section expande

    Chromoelectric fields and quarkonium-hadron interactions at high energies

    Full text link
    We develop a simple model to study the heavy quarkonium-hadron cross section in the high energy limit. The hadron is represented by an external electric color field (capacitor) and the heavy quarkonium is represented by a small color dipole. Using high energy approximations we compute the relevant cross sections, which are then compared with results obtained with other methods. Our calculations are presented in a pedagogical way accessible to undergraduate students.Comment: To appear in Physical Review C, 24 pages, 10 eps figure

    Family health narratives : midlife women’s concepts of vulnerability to illness

    Get PDF
    Perceptions of vulnerability to illness are strongly influenced by the salience given to personal experience of illness in the family. This article proposes that this salience is created through autobiographical narrative, both as individual life story and collectively shaped family history. The paper focuses on responses related to health in the family drawn from semi-structured interviews with women in a qualitative study exploring midlife women’s health. Uncertainty about the future was a major emergent theme. Most respondents were worried about a specified condition such as heart disease or breast cancer. Many women were uncertain about whether illness in the family was inherited. Some felt certain that illness in the family meant that they were more vulnerable to illness or that their relatives’ ageing would be mirrored in their own inevitable decline, while a few expressed cautious optimism about the future. In order to elucidate these responses, we focused on narratives in which family members’ appearance was discussed and compared to that of others in the family. The visualisation of both kinship and the effects of illness, led to strong similarities being seen as grounds for worry. This led to some women distancing themselves from the legacies of illness in their families. Women tended to look at the whole family as the context for their perceptions of vulnerability, developing complex patterns of resemblance or difference within their families

    Comment on "Plasma ionization by annularly bounded helicon waves" [Phys . Plasmas 13, 063501 (2006)]

    Full text link
    The neoclassical calculation of the helicon wave theory contains a fundamental flaw. Use is made of a proportional relationship between the magnetic field and its curl to derive the Helmholtz equation describing helicon wave propagation; however, by the fundamental theorem of Stokes, the curl of the magnetic field must be perpendicular to that portion of the field contributing to the local curl. Reexamination of the equations of motion indicates that only electromagnetic waves propagate through a stationary region of constant pressure in a fully ionized, neutral medium.Comment: 7 pages, 1 figure, to be published in Phys. Plasmas, http://link.aip.org/link/?PHPAEN/16/054701/

    First principles calculation of polarization induced interfacial charges in GaN/AlN heterostructures

    Full text link
    We propose a new method to calculate polarization induced interfacial charges in semiconductor heterostructures using classical electrostatics applied to real-space band diagrams from first principles calculations and apply it to GaN/AlN heterostructures with ultrathin AlN layers (4-6 monolayers). We show that the calculated electric fields and interfacial charges are independent of the exchange-correlation functionals used (local-density approximation and hybrid functionals). We also find the calculated interfacial charge of (6.8 +/- 0.4) x 10^13 cm-2 to be in excellent agreement with experiments and the value of 6.58 x 10^13 cm-2 calculated from bulk polarization constants, validating the use of bulk constants even for very thin films.Comment: 3 pages, 2 figures; submitted to Applied Physics Letter

    The conceptualisation and measurement of DSM-5 Internet Gaming Disorder: the development of the IGD-20 Test

    Get PDF
    Background: Over the last decade, there has been growing concern about ‘gaming addiction’ and its widely documented detrimental impacts on a minority of individuals that play excessively. The latest (fifth) edition of the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders (DSM-5) included nine criteria for the potential diagnosis of Internet Gaming Disorder (IGD) and noted that it was a condition that warranted further empirical study. Aim: The main aim of this study was to develop a valid and reliable standardised psychometrically robust tool in addition to providing empirically supported cut-off points. Methods: A sample of 1003 gamers (85.2% males; mean age 26 years) from 57 different countries were recruited via online gaming forums. Validity was assessed by confirmatory factor analysis (CFA), criterion-related validity, and concurrent validity. Latent profile analysis was also carried to distinguish disordered gamers from non-disordered gamers. Sensitivity and specificity analyses were performed to determine an empirical cut-off for the test. Results: The CFA confirmed the viability of IGD-20 Test with a six-factor structure (salience, mood modification, tolerance, withdrawal, conflict and relapse) for the assessment of IGD according to the nine criteria from DSM-5. The IGD-20 Test proved to be valid and reliable. According to the latent profile analysis, 5.3% of the total participants were classed as disordered gamers. Additionally, an optimal empirical cut-off of 71 points (out of 100) seemed to be adequate according to the sensitivity and specificity analyses carried
    • …
    corecore