21 research outputs found

    The maximum alcohol withdrawal syndrome score associates with worse clinical outcomes - A retrospective cohort study

    Full text link
    Background: The Wetterling alcohol withdrawal syndrome (AWS) scale determines withdrawal severity and guides treatment. We investigated associations between maximum AWS scores and clinical outcomes. Methods: This retrospective cohort study considered AWS assessments measured from 8/2015-8/2017. We used multivariable linear and logistic regression to analyze associations between the maximum score and increased length of stay (LOS) and in-hospital mortality, respectively. Firstly, we investigated the maximum score of all AWS assessments any time during the stay, secondly, the maximum measured only within the first 3 days of withdrawal. Results: A total of 2,464 hospital stays showed that, patients with “mild” (9) maximum scores had median LOS of 5.93, 9.35, 14.71 days, mortality was 1.7%, 4.8%, 8.0%, respectively. Regression showed that a higher maximum score was independently associated with increased LOS and mortality (both p < 0.001). Based on the maximum AWS score within the first 3 days, the median LOS was 6.18, 9.00, 12.89 days, mortality was 2.2%, 3.6%, 7.6%, respectively. A higher maximum score in the first 3 days was independently associated with increased LOS (p = 0.036) and mortality (p = 0.001). Severe maximum AWS scores within 3 days of withdrawal had an odds ratio of 2.53 (95% CI: 1.27, 4.82; p = 0.0060) for in-hospital death. Conclusions: Maximum AWS scores associate independently with increased LOS and in-hospital mortality. This association is reproducible within the first 3 days of withdrawal. Development of such a 3-day tool could help clinicians assess the risk of worse clinical outcomes early on and adjust care accordingly

    ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight

    Get PDF
    The photolysis rate constant of dichlorine peroxide (ClOOCl, ClO dimer) JClOOCl is a critical parameter in catalytic cycles destroying ozone (O3) in the polar stratosphere. In the atmospherically relevant wavelength region (λ > 310 nm), significant discrepancies between laboratory measurements of ClOOCl absorption cross sections and spectra cause a large uncertainty in JClOOCl. Previous investigations of the consistency of published JClOOCl with atmospheric observations of chlorine monoxide (ClO) and ClOOCl have focused on the photochemical equilibrium between ClOOCl formation and photolysis, and thus could only constrain the ratio of JClOOCl over the ClOOCl formation rate constant krec. Here, we constrain the atmospherically effective JClOOCl independent of krec, using ClO measured in the same air masses before and directly after sunrise during an aircraft flight that was part of the RECONCILE field campaign in the winter 2010 from Kiruna, Sweden. Over sunrise, when the ClO/ClOOCl system comes out of thermal equilibrium and the influence of the ClO recombination reaction is negligible, the increase in ClO concentrations is significantly faster than expected from JClOOCl based on the absorption spectrum proposed by Pope et al. (2007), but does not warrant cross sections larger than recently published values by Papanastasiou et al. (2009). In particular, the existence of a significant ClOOCl absorption band longwards of 420 nm is not supported by our observations. The observed night-time ClO would not be consistent with a ClO/ClOOCl thermal equilibrium constant significantly higher than the one proposed by Plenge et al. (2005)

    Spectroscopic evidence of large aspherical β-NAT particles involved in denitrification in the December 2011 Arctic stratosphere

    Get PDF
    We analyze polar stratospheric cloud (PSC) signatures in airborne MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding – STRatospheric aircraft) observations in the spectral regions from 725 to 990 and 1150 to 1350 cm−1 under conditions suitable for the existence of nitric acid trihydrate (NAT) above northern Scandinavia on 11 December 2011. The high-resolution infrared limb emission spectra of MIPAS-STR show a characteristic “shoulder-like” signature in the spectral region around 820 cm−1, which is attributed to the ν2 symmetric deformation mode of NO3− in β-NAT. Using radiative transfer calculations involving Mie and T-Matrix methods, the spectral signatures of spherical and aspherical particles are simulated. The simulations are constrained using collocated in situ particle measurements. Simulations assuming highly aspherical spheroids with aspect ratios (AR) of 0.1 or 10.0 and a lognormal particle mode with a mode radius of 4.8 µm reproduce the observed spectra to a high degree. A smaller lognormal mode with a mode radius of 2.0 µm, which is also taken into account, plays only a minor role. Within the scenarios analyzed, the best overall agreement is found for elongated spheroids with AR  =  0.1. Simulations of spherical particles and spheroids with AR  =  0.5 and 2.0 return results very similar to each other and do not allow us to reproduce the signature around 820 cm−1. The observed “shoulder-like” signature is explained by the combination of the absorption/emission and scattering characteristics of large highly aspherical β-NAT particles. The size distribution supported by our results corresponds to ∼ 9 ppbv of gas-phase equivalent HNO3 at the flight altitude of ∼ 18.5 km. The results are compared with the size distributions derived from the in situ observations, a corresponding Chemical Lagrangian Model of the Stratosphere (CLaMS) simulation, and excess gas-phase HNO3 observed in a nitrification layer directly below the observed PSC. The presented results suggest that large highly aspherical β-NAT particles involved in denitrification of the polar stratosphere can be identified by means of passive infrared limb emission measurements

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions

    Get PDF
    Abstract. Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over &gt;106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.</jats:p

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results

    Get PDF
    The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability
    corecore