27 research outputs found
An international consensus panel on the potential value of Digital Surgery
OBJECTIVES: The use of digital technology in surgery is increasing rapidly, with a wide array of new applications from presurgical planning to postsurgical performance assessment. Understanding the clinical and economic value of these technologies is vital for making appropriate health policy and purchasing decisions. We explore the potential value of digital technologies in surgery and produce expert consensus on how to assess this value. DESIGN: A modified Delphi and consensus conference approach was adopted. Delphi rounds were used to generate priority topics and consensus statements for discussion. SETTING AND PARTICIPANTS: An international panel of 14 experts was assembled, representing relevant stakeholder groups: clinicians, health economists, health technology assessment experts, policy-makers and industry. PRIMARY AND SECONDARY OUTCOME MEASURES: A scoping questionnaire was used to generate research questions to be answered. A second questionnaire was used to rate the importance of these research questions. A final questionnaire was used to generate statements for discussion during three consensus conferences. After discussion, the panel voted on their level of agreement from 1 to 9; where 1=strongly disagree and 9=strongly agree. Consensus was defined as a mean level of agreement of >7. RESULTS: Four priority topics were identified: (1) how data are used in digital surgery, (2) the existing evidence base for digital surgical technologies, (3) how digital technologies may assist surgical training and education and (4) methods for the assessment of these technologies. Seven consensus statements were generated and refined, with the final level of consensus ranging from 7.1 to 8.6. CONCLUSION: Potential benefits of digital technologies in surgery include reducing unwarranted variation in surgical practice, increasing access to surgery and reducing health inequalities. Assessments to consider the value of the entire surgical ecosystem holistically are critical, especially as many digital technologies are likely to interact simultaneously in the operating theatre.</p
COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study
Background:
The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms.
Methods:
International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms.
Results:
‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country.
Interpretation:
This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men
Effectiveness of Contact Tracing for Viral Disease Mitigation and Suppression: Evidence-Based Review
BackgroundContact tracing in association with quarantine and isolation is an important public health tool to control outbreaks of infectious diseases. This strategy has been widely implemented during the current COVID-19 pandemic. The effectiveness of this nonpharmaceutical intervention is largely dependent on social interactions within the population and its combination with other interventions. Given the high transmissibility of SARS-CoV-2, short serial intervals, and asymptomatic transmission patterns, the effectiveness of contact tracing for this novel viral agent is largely unknown.
ObjectiveThis study aims to identify and synthesize evidence regarding the effectiveness of contact tracing on infectious viral disease outcomes based on prior scientific literature.
MethodsAn evidence-based review was conducted to identify studies from the PubMed database, including preprint medRxiv server content, related to the effectiveness of contact tracing in viral outbreaks. The search dates were from database inception to July 24, 2020. Outcomes of interest included measures of incidence, transmission, hospitalization, and mortality.
ResultsOut of 159 unique records retrieved, 45 (28.3%) records were reviewed at the full-text level, and 24 (15.1%) records met all inclusion criteria. The studies included utilized mathematical modeling (n=14), observational (n=8), and systematic review (n=2) approaches. Only 2 studies considered digital contact tracing. Contact tracing was mostly evaluated in combination with other nonpharmaceutical interventions and/or pharmaceutical interventions. Although some degree of effectiveness in decreasing viral disease incidence, transmission, and resulting hospitalizations and mortality was observed, these results were highly dependent on epidemic severity (R0 value), number of contacts traced (including presymptomatic and asymptomatic cases), timeliness, duration, and compliance with combined interventions (eg, isolation, quarantine, and treatment). Contact tracing effectiveness was particularly limited by logistical challenges associated with increased outbreak size and speed of infection spread.
ConclusionsTimely deployment of contact tracing strategically layered with other nonpharmaceutical interventions could be an effective public health tool for mitigating and suppressing infectious outbreaks by decreasing viral disease incidence, transmission, and resulting hospitalizations and mortality
Physicians’ Perceptions of and Satisfaction With Artificial Intelligence in Cancer Treatment: A Clinical Decision Support System Experience and Implications for Low-Middle–Income Countries
As technology continues to improve, health care systems have the opportunity to use a variety of innovative tools for decision-making, including artificial intelligence (AI) applications. However, there has been little research on the feasibility and efficacy of integrating AI systems into real-world clinical practice, especially from the perspectives of clinicians who use such tools. In this paper, we review physicians’ perceptions of and satisfaction with an AI tool, Watson for Oncology, which is used for the treatment of cancer. Watson for Oncology has been implemented in several different settings, including Brazil, China, India, South Korea, and Mexico. By focusing on the implementation of an AI-based clinical decision support system for oncology, we aim to demonstrate how AI can be both beneficial and challenging for cancer management globally and particularly for low-middle–income countries. By doing so, we hope to highlight the need for additional research on user experience and the unique social, cultural, and political barriers to the successful implementation of AI in low-middle–income countries for cancer care
Recommendations for the safe, effective use of adaptive CDS in the US healthcare system: an AMIA position paper
Abstract The development and implementation of clinical decision support (CDS) that trains itself and adapts its algorithms based on new data—here referred to as Adaptive CDS—present unique challenges and considerations. Although Adaptive CDS represents an expected progression from earlier work, the activities needed to appropriately manage and support the establishment and evolution of Adaptive CDS require new, coordinated initiatives and oversight that do not currently exist. In this AMIA position paper, the authors describe current and emerging challenges to the safe use of Adaptive CDS and lay out recommendations for the effective management and monitoring of Adaptive CDS
Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases
Abstract Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics
Technology Use and Preferences to Support Clinical Practice Guideline Awareness and Adherence in Individuals With Sickle Cell Disease
Objective
Sickle cell disease (SCD) is a chronic condition affecting over 100 000 individuals in the United States, predominantly from vulnerable populations. Clinical practice guidelines, written for providers, have low adherence. This study explored knowledge about guidelines; desire for guidelines; and how technology could support guideline awareness and adherence, examining current technology uses, and user preferences to inform design of a patient-centered guidelines application in a chronic disease.
Methods
This cross-sectional mixed-methods study involved semi-structured interviews, surveys, and focus groups of adolescents and adults with SCD. We evaluated interest, preferences, and anticipated benefits or barriers of a patient-centered adaptation of SCD practice guidelines; prospective technology uses for health; and barriers to technology utilization.
Results
Forty-seven individuals completed surveys and interviews, and 39 participated in three separate focus groups. Most participants (91%) were unaware of SCD guidelines, but almost all (96%) expressed interest in a guidelines application, identifying benefits (knowledge, activation, individualization, and rewards), and barriers (poor information, low motivation, and resource limitations). Current technology health uses included information access, care coordination, and reminders about health-related actions. Prospective technology uses included informational messaging and timely alerts. Barriers to technology use included lack of interest, lack of utility, and preference for direct communication.
Conclusions
This study’s findings can inform the design of clinical practice guideline applications, suggesting a promising role for technology to engage patients, facilitate care decisions and actions, and improve outcomes
Key use cases for artificial intelligence to reduce the frequency of adverse drug events: a scoping review
Adverse drug events (ADEs) represent one of the most prevalent types of health-care-related harm, and there is substantial room for improvement in the way that they are currently predicted and detected. We conducted a scoping review to identify key use cases in which artificial intelligence (AI) could be leveraged to reduce the frequency of ADEs. We focused on modern machine learning techniques and natural language processing. 78 articles were included in the scoping review. Studies were heterogeneous and applied various AI techniques covering a wide range of medications and ADEs. We identified several key use cases in which AI could contribute to reducing the frequency and consequences of ADEs, through prediction to prevent ADEs and early detection to mitigate the effects. Most studies (73 [94%] of 78) assessed technical algorithm performance, and few studies evaluated the use of AI in clinical settings. Most articles (58 [74%] of 78) were published within the past 5 years, highlighting an emerging area of study. Availability of new types of data, such as genetic information, and access to unstructured clinical notes might further advance the field
Performance of a Web-Based Reference Database With Natural Language Searching Capabilities: Usability Evaluation of DynaMed and Micromedex With Watson
BackgroundEvidence-based point-of-care information (POCI) tools can facilitate patient safety and care by helping clinicians to answer disease state and drug information questions in less time and with less effort. However, these tools may also be visually challenging to navigate or lack the comprehensiveness needed to sufficiently address a medical issue.
ObjectiveThis study aimed to collect clinicians’ feedback and directly observe their use of the combined POCI tool DynaMed and Micromedex with Watson, now known as DynaMedex. EBSCO partnered with IBM Watson Health, now known as Merative, to develop the combined tool as a resource for clinicians. We aimed to identify areas for refinement based on participant feedback and examine participant perceptions to inform further development.
MethodsParticipants (N=43) within varying clinical roles and specialties were recruited from Brigham and Women’s Hospital and Massachusetts General Hospital in Boston, Massachusetts, United States, between August 10, 2021, and December 16, 2021, to take part in usability sessions aimed at evaluating the efficiency and effectiveness of, as well as satisfaction with, the DynaMed and Micromedex with Watson tool. Usability testing methods, including think aloud and observations of user behavior, were used to identify challenges regarding the combined tool. Data collection included measurements of time on task; task ease; satisfaction with the answer; posttest feedback on likes, dislikes, and perceived reliability of the tool; and interest in recommending the tool to a colleague.
ResultsOn a 7-point Likert scale, pharmacists rated ease (mean 5.98, SD 1.38) and satisfaction (mean 6.31, SD 1.34) with the combined POCI tool higher than the physicians, nurse practitioner, and physician’s assistants (ease: mean 5.57, SD 1.64, and satisfaction: mean 5.82, SD 1.60). Pharmacists spent longer (mean 2 minutes, 26 seconds, SD 1 minute, 41 seconds) on average finding an answer to their question than the physicians, nurse practitioner, and physician’s assistants (mean 1 minute, 40 seconds, SD 1 minute, 23 seconds).
ConclusionsOverall, the tool performed well, but this usability evaluation identified multiple opportunities for improvement that would help inexperienced users