456 research outputs found

    Enhancing assertive community treatment with cognitive behavioral social skills training for schizophrenia: study protocol for a randomized controlled trial.

    Get PDF
    BackgroundSchizophrenia leads to profound disability in everyday functioning (e.g., difficulty finding and maintaining employment, housing, and personal relationships). Medications can effectively reduce positive symptoms (e.g., hallucinations and delusions), but they do not meaningfully improve daily life functioning. Psychosocial evidence-based practices (EBPs) improve functioning, but these EBPs are not available to most people with schizophrenia. The field must close the research and service delivery gap by adapting EBPs for schizophrenia to facilitate widespread implementation in community settings. Our hybrid effectiveness and implementation study represents an initiative to bridge this divide. In this study we will test whether an existing EBP (i.e., Cognitive Behavioral Social Skills Training (CBSST)) modified to work in practice settings (i.e., Assertive Community Treatment (ACT) teams) commonly available to persons with schizophrenia results in better consumer outcomes. We will also identify key factors relevant to developing future CBSST implementation strategies.Methods/designFor the effectiveness study component, persons with schizophrenia will be recruited from existing publicly funded ACT teams operating in community settings. Participants will be randomized to one of the 2 treatments (ACT alone or ACT + Adapted CBSST) and followed longitudinally for 18 months with assessments every 18 weeks after baseline (5 in total). The primary outcome domain is psychosocial functioning (e.g., everyday living skills and activities related to employment, education, and housing) as measured by self-report, testing, and observation. Additional outcome domains of interest include mediators of change in functioning, symptoms, and quality of services. Primary analyses will be conducted using linear mixed-effects models for continuous data. The implementation study component consists of a structured, mixed qualitative-quantitative methodology (i.e., Concept Mapping) to characterize and assess the implementation experience from multiple stakeholder perspectives in order to inform future implementation initiatives.DiscussionAdapting CBSST to fit into the ACT service delivery context found throughout the United States creates an opportunity to substantially increase the number of persons with schizophrenia who could have access to and benefit from EBPs. As part of the implementation learning process training materials and treatment workbooks have been revised to promote easier use of CBSST in the context of brief community-based ACT visits.Trial registrationClinicalTrials.gov NCT02254733 . Date of registration: 25 April 2014

    Fraud on Any Market

    Get PDF
    Claims of securities fraud had historically failed because investors seldom rely on false or misleading statements when transacting securities. To bolster confidence in securities markets, the U.S. Supreme Court adopted a doctrine called “fraud-on-the-market” so that duped investors can show detrimental reliance without ever encountering the fraudulent statements. The doctrine assumes that a stock’s price reflects all material information, meaning that an investor who bought tainted stock has constructively relied on the fraud. Fraud-on-the-market is not only unavailable in other markets but is also embattled within securities law. The doctrine has endured volleys of criticisms about whether markets actually absorb information, leading critics to believe that the Supreme Court would eliminate it in 2014. The Court did not. In light of persistent questions about whether the doctrine reflects reality or has outlived its purpose, our empirical research tests fraud-on-the-market’s viability by investigating sports gambling: we find that the doctrine provides a sound remedy for investors in any market. The sports wagering market operates like others in which defrauded individuals have historically failed to support their fraud claims due to a lack of reliance. We show that securities and gambling markets suffer from many of the same frailties. Chief among them is that both investors and bettors place money in markets where they lack information about deception, cheating, and fraud. And like investors rely on prices affected by fraud, gamblers reference wagering information based on the playing field: if deception enables a team to fare better or worse, this skews the betting lines on which gamblers rely. The difference between these markets, though, is that investors enjoy a body of securities law to condemn fraud. We first argue that fraud-on-the-market would benefit most types of investable markets like sports gambling and support the doctrine in the securities context. Despite criticisms of the doctrine, our analysis shows that fraud creates the presumption of distorted prices. Second, the money wagered via sports betting and daily fantasy sports (DFS) would generate damages such that leagues would better maintain a competitive environment, boosting sports integrity akin to how securities regulations provide market protections. Also, our argument recognizes the inequity of denying sports bettors and DFS users a remedy. Whereas the leagues had traditionally benefited from gambling indirectly, today, the NFL, NHL, MLB, and NBA have partnered with DFS and other gambling industry companies. Since the leagues now benefit directly from gambling, and lucratively so, they should owe their fans a truly competitive landscape

    A new statistical method for curve group analysis of longitudinal gene expression data illustrated for breast cancer in the NOWAC postgenome cohort as a proof of principle

    Get PDF
    International audienceA new statistical method for curve group analysis of longitudinal gene expression data illustrated for breast cancer in the NOWAC postgenome cohort as a proof of principle Abstract Background: The understanding of changes in temporal processes related to human carcinogenesis is limited. One approach for prospective functional genomic studies is to compile trajectories of differential expression of genes, based on measurements from many case-control pairs. We propose a new statistical method that does not assume any parametric shape for the gene trajectories. Methods: The trajectory of a gene is defined as the curve representing the changes in gene expression levels in the blood as a function of time to cancer diagnosis. In a nested case–control design it consists of differences in gene expression levels between cases and controls. Genes can be grouped into curve groups, each curve group corresponding to genes with a similar development over time. The proposed new statistical approach is based on a set of hypothesis testing that can determine whether or not there is development in gene expression levels over time, and whether this development varies among different strata. Curve group analysis may reveal significant differences in gene expression levels over time among the different strata considered. This new method was applied as a " proof of concept " to breast cancer in the Norwegian Women and Cancer (NOWAC) postgenome cohort, using blood samples collected prospectively that were specifically preserved for transcriptomic analyses (PAX tube). Cohort members diagnosed with invasive breast cancer through 2009 were identified through linkage to the Cancer Registry of Norway, and for each case a random control from the postgenome cohort was also selected, matched by birth year and time of blood sampling, to create a case-control pair. After exclusions, 441 case-control pairs were available for analyses, in which we considered strata of lymph node status at time of diagnosis and time of diagnosis with respect to breast cancer screening visits. Results: The development of gene expression levels in the NOWAC postgenome cohort varied in the last years before breast cancer diagnosis, and this development differed by lymph node status and participation in the Norwegian Breast Cancer Screening Program. The differences among the investigated strata appeared larger in the year before breast cancer diagnosis compared to earlier years.ConclusionsThis approach shows good properties in term of statistical power and type 1 error under minimal assumptions. When applied to a real data set it was able to discriminate between groups of genes with non-linear similar patterns before diagnosis

    Three Super-Earths Orbiting HD 7924

    Get PDF
    We report the discovery of two super-Earth mass planets orbiting the nearby K0.5 dwarf HD 7924 which was previously known to host one small planet. The new companions have masses of 7.9 and 6.4 M_\oplus, and orbital periods of 15.3 and 24.5 days. We perform a joint analysis of high-precision radial velocity data from Keck/HIRES and the new Automated Planet Finder Telescope (APF) to robustly detect three total planets in the system. We refine the ephemeris of the previously known planet using five years of new Keck data and high-cadence observations over the last 1.3 years with the APF. With this new ephemeris, we show that a previous transit search for the inner-most planet would have covered 70% of the predicted ingress or egress times. Photometric data collected over the last eight years using the Automated Photometric Telescope shows no evidence for transits of any of the planets, which would be detectable if the planets transit and their compositions are hydrogen-dominated. We detect a long-period signal that we interpret as the stellar magnetic activity cycle since it is strongly correlated with the Ca II H and K activity index. We also detect two additional short-period signals that we attribute to rotationally-modulated starspots and a one month alias. The high-cadence APF data help to distinguish between the true orbital periods and aliases caused by the window function of the Keck data. The planets orbiting HD 7924 are a local example of the compact, multi-planet systems that the Kepler Mission found in great abundance.Comment: Accepted to ApJ on 4/7/201

    The Deformable Mirror Demonstration Mission (DeMi) CubeSat: optomechanical design validation and laboratory calibration

    Full text link
    Coronagraphs on future space telescopes will require precise wavefront correction to detect Earth-like exoplanets near their host stars. High-actuator count microelectromechanical system (MEMS) deformable mirrors provide wavefront control with low size, weight, and power. The Deformable Mirror Demonstration Mission (DeMi) payload will demonstrate a 140 actuator MEMS deformable mirror (DM) with \SI{5.5}{\micro\meter} maximum stroke. We present the flight optomechanical design, lab tests of the flight wavefront sensor and wavefront reconstructor, and simulations of closed-loop control of wavefront aberrations. We also present the compact flight DM controller, capable of driving up to 192 actuator channels at 0-250V with 14-bit resolution. Two embedded Raspberry Pi 3 compute modules are used for task management and wavefront reconstruction. The spacecraft is a 6U CubeSat (30 cm x 20 cm x 10 cm) and launch is planned for 2019.Comment: 15 pages, 10 figues. Presented at SPIE Astronomical Telescopes + Instrumentation, Austin, Texas, US

    A Six-Planet System Around the Star HD 34445

    Full text link
    We present a new precision radial velocity dataset that reveals a multi-planet system orbiting the G0V star HD 34445. Our 18-year span consists of 333 precision radial velocity observations, 56 of which were previously published, and 277 which are new data from Keck Observatory, Magellan at Las Campanas Observatory, and the Automated Planet Finder at Lick Observatory. These data indicate the presence of six planet candidates in Keplerian motion about the host star with periods of 1057, 215, 118, 49, 677, and 5700 days, and minimum masses of 0.63, 0.17, 0.1, 0.05, 0.12 and 0.38 Jupiter masses respectively. The HD 34445 planetary system, with its high degree of multiplicity, its long orbital periods, and its induced stellar radial velocity half-amplitudes in the range 2ms1K5ms12 \,{\rm m\, s^{-1}} \lesssim K \lesssim 5\,{\rm m\, s^{-1}} is fundamentally unlike either our own solar system (in which only Jupiter and Saturn induce significant reflex velocities for the Sun), or the Kepler multiple-transiting systems (which tend to have much more compact orbital configurations)Comment: 10 pages, 11 figure

    The impact of land-cover change on flood peaks in peatland basins

    Get PDF
    In headwater peatlands, saturation-excess overland flow is a dominant source of river discharge. Human modifications to headwater peatlands result in vegetation cover change but there is a lack of understanding about how the spatial distribution of such change impacts flood peaks. A fully distributed version of TOPMODEL with an overland flow velocity module was used to simulate flood response for three upland peat basins. Bare peat strips adjacent to channels resulted in a higher and faster flow peak; for a 20 mm/hr rainfall event, with bare riparian zones covering 10% of the basin area, peaks were increased, compared to the current hydrograph, by 12.8%, 1.8% and 19.6% in the three basins. High density Sphagnum ground cover over the same riparian zones reduced flow peaks (e.g. by 10.1%, 1.8% and 13.4% for the 20 mm hr-1 event) compared to the current hydrograph. With similar total areas of land-cover change, the size of randomly located patches of changed cover had no effect on peak flow for patch sizes up to 40000 m2. However, cover changes on gentle slope areas generally resulted in a larger change in peak flow when compared with the same changes on steeper slopes. Considering all results for the same proportion of catchment area that undergoes change, land-cover change along narrow riparian buffer strips had the highest impact on river flow. Thus, the protection and revegetation of damaged riparian areas in upland peat catchments may be highly beneficial for flood management

    A Fire Severity Mapping System for Real-Time Fire Management Applications and Long-Term Planning: The FIRESEV project

    Get PDF
    Accurate, consistent, and timely fire severity maps are needed in all phases of fire management including planning, managing, and rehabilitating wildfires. The problem is that fire severity maps are commonly developed from satellite imagery that is difficult to use for planning wildfire responses before a fire has actually happened and can’t be used for real-time wildfire management because of the timing of the imagery delivery. Moreover, imagery is difficult to use for controlled fires such as prescribed burning. This study, called FIRESEV (FIRE SEVerity Mapping Tools) created a comprehensive set of tools and protocols to deliver, create, and evaluate fire severity maps for all phases of fire management. The first tool is a Severe Fire Potential Map (SFPM) that quantifies the potential for fires to burn with high severity, should they occur, for any 30m x 30m piece of ground across the western United States. This map was developed using empirical models that related topographic, vegetation, and fire weather variables to burn severity as mapped using the Monitoring Trends in Burn Severity (MTBS) digital products. This SFPM map is currently available on the Fire Research and Management Exchange System (FRAMES, http://www.frames.gov/firesev) web site and can be used to plan for future wildfires or for managing wildfires in real time, e.g. by including it as a layer in Wildland Fire Decision Support System or other GIS analysis. The next tool was the inclusion of a fire severity mapping algorithm in the Wildland Fire Assessment Tool (WFAT) developed by the National Interagency Fuels Technology Transfer (NIFTT) team. WFAT is used for fuel treatment planning to predict potential fire effects under prescribed fire weather conditions (http://www.frames.gov/partner-sites/niftt/tools/niftt-current-resources/). Now, fire severity can be mapped explicitly from fire effects simulation models (FOFEM, Consume) for real-time and planning wildfire applications. Next, the FIRESEV project showed how results from the WFAT simulated fire severity can be integrated with satellite imagery to improve fire severity mapping. And last, the FIRESEV project produced a suite of research studies, synthesis papers, and popular articles designed to improve the description, interpretation, and mapping of fire severity for wildland fire management: (1) a research study created a completely objective method of quantifying fire severity from fire effects to obtain nine unique classes of fire severity, (2) a research study comprehensively contrasted all current classifications of fire severity using Composite Burn Index (CBI) as measured on over 300 plots across the western United States to determine commonalities and differences, and (3) a synthesis paper was written discussing the problems involved in measuring, describing, and quantifying fire severity. This FIRESEV project yielded over 15 deliverables that we feel provides a comprehensive suite of products to create useful fire severity maps, along with current satellite imagery products, and also FIRESEV provides a thorough background on how to measure, interpret, and apply fire severity in fire management
    corecore