5,872 research outputs found

    Asymmetric additions to dienes catalysed by a dithiophosphoric acid.

    Get PDF
    Chiral Brønsted acids (proton donors) have been shown to facilitate a broad range of asymmetric chemical transformations under catalytic conditions without requiring additional toxic or expensive metals. Although the catalysts developed thus far are remarkably effective at activating polarized functional groups, it is not clear whether organic Brønsted acids can be used to catalyse highly enantioselective transformations of unactivated carbon-carbon multiple bonds. This deficiency persists despite the fact that racemic acid-catalysed Markovnikov additions to alkenes are well known chemical transformations. Here we show that chiral dithiophosphoric acids can catalyse the intramolecular hydroamination and hydroarylation of dienes and allenes to generate heterocyclic products in exceptional yield and enantiomeric excess. We present a mechanistic hypothesis that involves the addition of the acid catalyst to the diene, followed by nucleophilic displacement of the resulting dithiophosphate intermediate; we also report mass spectroscopic and deuterium labelling studies in support of the proposed mechanism. The catalysts and concepts revealed in this study should prove applicable to other asymmetric functionalizations of unsaturated systems

    B cells are capable of independently eliciting rapid reactivation of encephalitogenic CD4 T cells in a murine model of multiple sclerosis

    Get PDF
    <div><p>Recent success with B cell depletion therapies has revitalized efforts to understand the pathogenic role of B cells in Multiple Sclerosis (MS). Using the adoptive transfer system of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, we have previously shown that mice in which B cells are the only MHCII-expressing antigen presenting cell (APC) are susceptible to EAE. However, a reproducible delay in the day of onset of disease driven by exclusive B cell antigen presentation suggests that B cells require optimal conditions to function as APCs in EAE. In this study, we utilize an <i>in vivo</i> genetic system to conditionally and temporally regulate expression of MHCII to test the hypothesis that B cell APCs mediate attenuated and delayed neuroinflammatory T cell responses during EAE. Remarkably, induction of MHCII on B cells following the transfer of encephalitogenic CD4 T cells induced a rapid and robust form of EAE, while no change in the time to disease onset occurred for recipient mice in which MHCII is induced on a normal complement of APC subsets. Changes in CD4 T cell activation over time did not account for more rapid onset of EAE symptoms in this new B cell-mediated EAE model. Our system represents a novel model to study how the timing of pathogenic cognate interactions between lymphocytes facilitates the development of autoimmune attacks within the CNS.</p></div

    The relation between 13CO(2-1) line width in molecular clouds and bolometric luminosity of associated IRAS sources

    Full text link
    We search for evidence of a relation between properties of young stellar objects (YSOs) and their parent molecular clouds to understand the initial conditions of high-mass star formation. A sample of 135 sources was selected from the Infrared Astronomical Satellite (IRAS) Point Source Catalog, on the basis of their red color to enhance the possibility of discovering young sources. Using the Kolner Observatorium fur SubMillimeter Astronomie (KOSMA) 3-m telescope, a single-point survey in 13CO(2-1) was carried out for the entire sample, and 14 sources were mapped further. Archival mid-infrared (MIR) data were compared with the 13CO emissions to identify evolutionary stages of the sources. A 13CO observed sample was assembled to investigate the correlation between 13CO line width of the clouds and the luminosity of the associated YSOs. We identified 98 sources suitable for star formation analyses for which relevant parameters were calculated. We detected 18 cores from 14 mapped sources, which were identified with eight pre-UC HII regions and one UC HII region, two high-mass cores earlier than pre-UC HII phase, four possible star forming clusters, and three sourceless cores. By compiling a large (360 sources) 13CO observed sample, a good correlation was found between the 13CO line width of the clouds and the bolometric luminosity of the associated YSOs, which can be fitted as a power law: lg(dV13/km/s)=-0.023+0.135lg(Lbol/Lsolar). Results show that luminous (>10^3Lsolar) YSOs tend to be associated with both more massive and more turbulent (dV13>2km/s) molecular cloud structures.Comment: Accepted by Astronomy and Astrophysics; this version: sent to publisher; 13 pages, 4 figures, 2 tables, 1 online appendi

    Spin Density wave instability in a ferromagnet

    Get PDF
    Ferromagnetic (FM) and incommensurate spin-density wave (ISDW) states are an unusual set of competing magnetic orders that are seldom observed in the same material without application of a polarizing magnetic field. We report, for the first time, the discovery of an ISDW state that is derived from a FM ground state through a Fermi surface (FS) instability in Fe3_3Ga4_4. This was achieved by combining neutron scattering experiments with first principles simulations. Neutron diffraction demonstrates that Fe3_3Ga4_4 is in an ISDW state at intermediate temperatures and that there is a conspicuous re-emergence of ferromagnetism above 360 K. First principles calculations show that the ISDW ordering wavevector is in excellent agreement with a prominent nesting condition in the spin-majority FS demonstrating the discovery of a novel instability for FM metals; ISDW formation due to Fermi surface nesting in a spin-polarized Fermi surface.Comment: 6 pages with 4 figures. Supplemental Materials Include

    The cerebrospinal fluid immune cell landscape in animal models of multiple sclerosis

    Get PDF
    The fluid compartment surrounding the central nervous system (CNS) is a unique source of immune cells capable of reflecting the pathophysiology of neurologic diseases. While human clinical and experimental studies often employ cerebrospinal fluid (CSF) analysis, assessment of CSF in animal models of disease are wholly uncommon, particularly in examining the cellular component. Barriers to routine assessment of CSF in animal models of multiple sclerosis (MS) include limited sample volume, blood contamination, and lack of feasible longitudinal approaches. The few studies characterizing CSF immune cells in animal models of MS are largely outdated, but recent work employing transcriptomics have been used to explore new concepts in CNS inflammation and MS. Absence of extensive CSF data from rodent and other systems has curbed the overall impact of experimental models of MS. Future approaches, including examination of CSF myeloid subsets, single cell transcriptomics incorporating antigen receptor sequencing, and use of diverse animal models, may serve to overcome current limitations and provide critical insights into the pathogenesis of, and therapeutic developments for, MS

    Pair creation of anti-de Sitter black holes on a cosmic string background

    Full text link
    We analyze the quantum process in which a cosmic string breaks in an anti-de Sitter (AdS) background, and a pair of charged or neutral black holes is produced at the ends of the strings. The energy to materialize and accelerate the pair comes from the strings tension. In an AdS background this is the only study done in the process of production of a pair of correlated black holes with spherical topology. The acceleration AA of the produced black holes is necessarily greater than (|L|/3)^(1/2), where L<0 is the cosmological constant. Only in this case the virtual pair of black holes can overcome the attractive background AdS potential well and become real. The instantons that describe this process are constructed through the analytical continuation of the AdS C-metric. Then, we explicitly compute the pair creation rate of the process, and we verify that (as occurs with pair creation in other backgrounds) the pair production of nonextreme black holes is enhanced relative to the pair creation of extreme black holes by a factor of exp(Area/4), where Area is the black hole horizon area. We also conclude that the general behavior of the pair creation rate with the mass and acceleration of the black holes is similar in the AdS, flat and de Sitter cases, and our AdS results reduce to the ones of the flat case when L=0.Comment: 13 pages, 3 figures, ReVTeX

    Abelian Higgs Hair for Black Holes

    Get PDF
    We find evidence for the existence of solutions of the Einstein and Abelian Higgs field equations describing a black hole pierced by a Nielsen-Olesen vortex. This situation falls outside the scope of the usual no-hair arguments due to the non-trivial topology of the vortex configuration and the special properties of its energy-momentum tensor. By a combination of numerical and perturbative techniques we conclude that the black hole horizon has no difficulty in supporting the long range fields of the Nielsen Olesen string. Moreover, the effect of the vortex can in principle be measured from infinity, thus justifying its characterization as black hole ``hair".Comment: 31 pages, plain tex, 7 figures included. minor corrections and references adde

    Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Luminous Infrared Galaxy Candidates

    Get PDF
    We present Spitzer 3.6 and 4.5 μ\mum photometry and positions for a sample of 1510 brown dwarf candidates identified by the WISE all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12); Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify 7 fainter (4.5 μ\mum \sim 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy (HyLIRG) candidates. For this control sample we find another 6 brown dwarf candidates, suggesting that the 7 companion candidates are not physically associated. In fact, only one of these 7 Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this there is no evidence for any widely separated (>> 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of \sim 7.33 ×105\times 10^5 objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 μ\mum photometry, along with positionally matched BB and RR photometry from USNO-B; JJ, HH, and KsK_s photometry from 2MASS; and W1W1, W2W2, W3W3, and W4W4 photometry from the WISE all-sky catalog
    corecore