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The cerebrospinal fluid immune 
cell landscape in animal models of 
multiple sclerosis
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The fluid compartment surrounding the central nervous system (CNS) is a 
unique source of immune cells capable of reflecting the pathophysiology of 
neurologic diseases. While human clinical and experimental studies often employ 
cerebrospinal fluid (CSF) analysis, assessment of CSF in animal models of disease 
are wholly uncommon, particularly in examining the cellular component. Barriers 
to routine assessment of CSF in animal models of multiple sclerosis (MS) include 
limited sample volume, blood contamination, and lack of feasible longitudinal 
approaches. The few studies characterizing CSF immune cells in animal models 
of MS are largely outdated, but recent work employing transcriptomics have 
been used to explore new concepts in CNS inflammation and MS. Absence of 
extensive CSF data from rodent and other systems has curbed the overall impact 
of experimental models of MS. Future approaches, including examination of 
CSF myeloid subsets, single cell transcriptomics incorporating antigen receptor 
sequencing, and use of diverse animal models, may serve to overcome current 
limitations and provide critical insights into the pathogenesis of, and therapeutic 
developments for, MS.
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1. Introduction

The sciences do not try to explain, they hardly even try to interpret, they mainly make models. 
By a model [it is meant a] construct which, with the addition of certain verbal interpretations, 
describes observed phenomena. The justification of such a mathematical construct is solely and 
precisely that it is expected to work – that is, correctly to describe phenomena from a reasonably 
wide area. Furthermore, it must satisfy certain esthetic criteria – that is, in relation to how much 
it describes, it must be rather simple.

— John von Neumann (Von Neumann, 1955)

1.1. Rationale for examining spinal fluid in multiple sclerosis

A lumbar puncture, or spinal tap, has routinely been utilized diagnostically and/or 
therapeutically since its development as a modern medical procedure in the late 19th century 
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(Marsala et al., 2015). Examination of leukocytes contained within 
cerebrospinal fluid (CSF) has provided opportunities to glean basic 
pathophysiologic traits of neurologic diseases including meningitis, 
encephalitis, and autoimmune conditions such as multiple sclerosis 
(MS) (Goetz, 2007). While routine studies of the cellular constituents 
of CSF employed in the clinical setting based on cytochemical analysis 
remain elementary (Shahan et al., 2021), specialized analyses suggest 
more detailed characterization of the cellular component is 
meaningful for understanding the pathogenesis of MS. For example, 
intrathecal accumulation of oligoclonal bands (OCBs), a diagnostic 
and prognostic tool for MS (Avasarala et al., 2001; Freedman et al., 
2005), has spurred efforts toward identifying the nature of CSF 
plasmablasts abundant in MS (Alvermann et  al., 2014) as well as 
defining their antigen-specificity (Eggers et al., 2017; Lanz et al., 2022).

The compartmentalization of inflammatory responses in the CNS 
establishes a de facto limitation of focusing solely on the blood to study 
the initiation and propagation of inflammatory demyelination in 
MS. Significant differences in lymphoid and myeloid composition and 
phenotypic traits between CSF and blood have been described in 
MS. For example, the ratio of CD4 and CD8 T cells is distorted 
between compartments in MS, with flow cytometric studies 
demonstrating a higher CD4/CD8 ratio in the CSF (Kölmel and 
Sudau, 1988). More contemporary characterization by single cell RNA 
sequencing (scRNA-seq) has further defined disparities in immune 
cell populations between compartments, including unique functional 
traits of B cells in the CSF of MS patients (Ramesh et al., 2020). In 
terms of myeloid populations, various subsets of monocytes 
predominate in the blood of MS patients (Esaulova et al., 2020), while 
microglia-like cells are exclusively isolated from the CSF (Farhadian 
et al., 2018; Esaulova et al., 2020). The microenvironment of the CSF 
may impart distinctive cues on leukocytes such as myeloid cells that 
dictate tissue-specific phenotypes (Pashenkov et al., 2002), suggesting 
how cells within the CNS compartment may be influenced during 
inflammatory changes occurring in MS. Thus, analysis of immune 
cells from the CSF provides an exclusive assessment of the CNS 
compartment not available by interrogation of peripheral blood.

Critically, cells within the CSF reflect immune activity 
proximal to the tissues damaged by inflammation in MS, namely 
the optic nerves, brain, and spinal cord. CSF studies enabled by a 
relatively simple lumbar puncture circumvent more complicated 
and risk-prone procedures such as tissue biopsy to garner aspects 
of immune processes within the target organ. Moreover, it is now 
more clear than ever that CNS borders and barriers play an 
integral role in maintaining tissue-specific immunity and 
regulating inflammatory responses (Alves de Lima et al., 2020; 
Buckley and McGavern, 2022). Since CSF is directly in contact 
with the meninges, choroid plexus and perivascular spaces, 
cellular composition within the CSF offers a direct representation 
of what can go awry at the borders in CNS autoimmunity. Indeed, 
changes specific to progressive MS such as the formation of 
ectopic lymphoid tissue (ELT) (Serafini et al., 2004) suggest how 
important CSF cellular markers are to capturing the spectrum of 
inflammatory features in MS throughout different diseases states, 
particularly within the meninges. It appears that border associated 
macrophages (BAMs) exist within the CSF (Ostkamp et al., 2022), 
but whether they circulate within the CSF and/or represent the 
tissue state of myeloid cells within the parenchyma remains to 
be determined. Capturing features of meningeal and other barrier 

changes in MS will likely be important in discovering additional 
footholds for therapeutic intervention.

1.2. Rationale for using animal models in 
the study of MS

What is achieved by using animal models to study MS? As 
denoted by the celebrated applied mathematician John von Neumann, 
modeling serves as the main tool for scientific pursuits to not so much 
identify the reasons for phenomena in nature, but rather generate 
elements to describe mechanisms underpinning these phenomena. By 
making precise observations and generating descriptive interpretations 
from models, a refinement of various components of observed 
phenomena has produced much of the current understanding of the 
pathophysiology of MS and related diseases (Constantinescu et al., 
2011; Rangachari and Kuchroo, 2013). In addition to advantages such 
as animal genetics, speed of reproduction, ethical issues, and potential 
simplification of systems supporting the use of animal models in 
research (Chesselet and Carmichael, 2012; Mukherjee et al., 2022), the 
translational possibilities of models such as experimental autoimmune 
encephalomyelitis (EAE) has solidified the reliance on animal 
experimentation to drive therapeutic innovation for MS.

There are numerous drawbacks to reliance on EAE and other 
animal models as complete and faithful representations of all aspects 
of MS. Indeed, multiple facets of MS pathogenesis have not been 
adequately captured by modeling (Lassmann and Bradl, 2017). For 
example, the relevance of cytotoxic CD8 T cells in MS has been 
underestimated in most EAE models (Goverman et al., 2005; Mars 
et al., 2011), and no animal model exists that exemplifies the collection 
of key traits of progressive MS (Lassmann and Bradl, 2017; Baker 
et al., 2019).

Nevertheless, strategic use of animals for experimental models of 
MS affords potential value in many respects. Regarding the 
reductionistic aspect of EAE and other commonly used models for 
MS, particularly the murine systems, it has been argued that “…each 
model recapitulates a small piece of the human disease” (Van Epps, 
2005). Hence, using EAE as a simplified strategy to optimize 
mechanistic understanding of immune cells within the CNS during 
disease over time and in different contexts has, and promises to 
remain, a valuable tool for understanding MS. By extension, analyses 
of immune cell composition and phenotypes within the CSF is vital to 
maximizing understanding of the immuno-pathophysiology of MS 
and developing the insight required for even further 
efficacious therapies.

1.3. Challenges of CSF cellular analysis in 
animal models of MS

With the advent of transgenic technology, rodents became the 
favored model organism for studying MS, with a preponderance of 
experimental reports on the immunologic aspects of MS derived from 
EAE in mice (Rangachari and Kuchroo, 2013). Adult mice harbor 
approximately 40 μL of CSF at any given time, with an average CSF 
production rate of 0.38 ± 0.02 μL/min (Oshio et al., 2005). Thus, one 
major challenge in exploring immune cell traits within the CSF during 
murine EAE is the limited volume of fluid available for study. Typical 
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procurement of CSF from mice is through cisternal puncture and 
garners a small volume (5–7 μL). However, certain protocols offer an 
opportunity to double (Lim et al., 2018) or triple this volume (Maia 
et  al., 2013), the latter due to use of repeated sampling. Blood 
contamination from the isolation technique is also of primary concern 
given the location of multiple vessels near the cisterna magna (You 
et al., 2005; Lim et al., 2018). While lateral ventricle sampling does not 
increase the acquired volume or reduce potential for blood 
contamination (McIntyre et al., 2019), sampling through implanted 
ventricular catheters (Herzog et al., 2021) could facilitate longitudinal 
studies and may improve acquisition for successful studies on CSF 
immune cells in the future, as could modified procedures to ensure 
survival through repeated acquisition via the cisterna magna (Han 
et al., 2022).

2. CSF immune cells in animal models 
of MS: The status quo

Current knowledge regarding the immune cell composition 
within CSF from animal models of MS is limited. Somewhat 
surprisingly, the majority of studies examining the cellular constituents 
of CSF in EAE were undertaken decades ago. Almost 20 some years 
after the development of EAE (Van Epps, 2005) a series of reports in 
rhesus monkeys included a brief quantification of white blood cells 
within the CSF (Kabat et al., 1951), with a general pleocytosis being 
evident in diseased animals. Of note, there did not appear to be a 
correlation between CSF white cells and total protein or 
immunoglobulin. At that time, modern analytical tools were not 
available, but use of animal models to pursue hypothesis testing and 
concept development in MS pathogenesis research nevertheless 
persisted (Baxter, 2007).

Unsurprisingly, the majority of studies examining CSF in animal 
models of MS involve larger species such as the rat or guinea pig. 
Given the intense dedication early on during MS research to the 
concept that T cells are central to the pathogenesis of MS (Martin 
et al., 1992), CSF studies similarly tended to focus on T cells. In the 
late 1970s, a group at the University of Pennsylvania characterized 
basic CSF cellular features in guinea pig EAE. At the onset of 
neurologic impairment, a 30-fold increase in white cells was observed 
in the CSF, noted to be typically on the order of 100 μL per specimen. 
Using erythrocyte rosette testing and cytochemistry, they concluded 
the vast majority of CSF leukocytes were T cells (Wilkerson et al., 
1978). In the late 1980s, Rumsby and colleagues published several 
reports on the CSF profile in guinea pig EAE induced by immunization 
with guinea pig spinal cord homogenate emulsified in complete 
Freund’s adjuvant (CFA) (Suckling et al., 1986, 1987). Analyses were 
based on immunocytochemical detection of T cells and macrophages 
over time in this chronic relapsing model of MS. Acquiring what could 
be over 150 μL of CSF, they observed total CSF leukocytes building 
alongside disease development, with peak clinical scores 
corresponding to maximal numbers of CSF leukocytes (Suckling et al., 
1986). T cells in an activated state (based on IL-2 receptor staining) 
were found in similar proportion in both the CSF and meninges 
(Suckling et al., 1987). The significant relationship between activated 
T cells in the blood and CSF piqued interest in deciphering movements 
of T cells between the periphery and CNS during EAE (Suckling et al., 
1987). Later, another group explored the trafficking and T cell receptor 

(TCR) diversity of T cells within the CSF of Lewis rats with 
EAE. Examination of CSF acquired by cisternal puncture from active 
EAE induced by immunization with guinea pig MBP required pooled 
specimens from three animals for analysis. A bias toward Vβ8.2+ T 
cells was observed in both the CSF as well as spinal cord tissue, and 
could be detected without any restimulation ex vivo (Offner et al., 
1993). Based on flow cytometric quantification, T cells first appeared 
in CSF before clinical deficits developed and then accumulated within 
the spinal cord at disease onset (Buenafe et al., 1994). By defining the 
CDR3 sequences of T cells in the CSF and spinal cord parenchyma, it 
was concluded that “…CSF-derived T cells provide a representative 
view of CNS events at the onset of EAE.” Defining trafficking of 
lymphocytes within the CNS compartment during neuroinflammation 
can involve assessment of CSF along with border tissues and 
parenchyma for relative comparison of localization and abundance. 
An attempt was made at correlating various tissue locations of 
immune cells including CSF during EAE in rats. A minimum of 50 μL 
of CSF was analyzed from DA rats immunized with guinea pig spinal 
cord homogenate (Schmitt et al., 2012). In contrast to rats immunized 
with CFA alone that contained less than 1 cell/μL of CSF, rats with 
early stages of EAE had an average of over 60 cells/μL of CSF which 
were comprised of neutrophils and monocytes, but primarily CD3+ T 
cells. In situ, CD45+ cells accumulated within the ventricular system 
of the forebrain and midbrain early in disease, with subsequent 
accumulation throughout cisterns and the ventricular system. These 
results suggest that initial homing of T cells to CNS sites during EAE 
occurs at certain rostral anatomic regions and utilizes the CSF and 
CSF-adjacent tissues for trafficking (Schmitt et al., 2012). Functional 
characterization of CSF T cells was performed in a limited study by 
Renno et  al. (1994) who examined the CSF of SJL mice with 
EAE. While the volume of CSF obtained per animal was not specified, 
pooled specimens were used, and an average number of CSF cells was 
reported. Interestingly, control mice immunized with CFA alone 
harbored similar numbers of cells in the CSF as naive mice. A four-to 
five-fold increase in CSF cell count was observed depending on 
severity of EAE. Production of IL-2 and IFNγ by CSF leukocytes was 
detected by quantitative PCR and correlated with disease severity, 
mirroring the relation of cytokine expression in the parenchyma with 
impairment (Renno et  al., 1994). In sum, CSF studies in animal 
models of MS initially all reinforced the notion that T cells serve as 
central actors in the pathogenesis of MS.

More contemporary studies have also pursued aspects of T cell-
driven disease by employing rat EAE models of MS. T cells detected 
in the subarachnoid space by intravital imaging exhibit migrational 
behaviors indicative of antigen-specific interactions (Bartholomäus 
et al., 2009). Work from this same group extended these observations 
in part by profiling encephalitogenic T cells specific for MBP in 
different compartments such as the spinal cord parenchyma, 
meninges, blood and unspecified quantities of CSF (Schläger et al., 
2016). Isolated from the CSF by stereotactic-guided cisternal magna 
puncture and quantified by flow cytometry, the frequency of 
MBP-specific T cells in the CSF peak during the course of the disease 
at the same time as in the meninges, albeit in lower numbers. 
Comparing MBP-specific T cells isolated from each compartment 
using bulk RNA sequencing, activation markers were found to 
be more pronounced in antigen-specific T cells in the meninges and 
parenchyma than in the CSF, suggesting that circulation through the 
fluid compartment of the CNS could serve as a staging area or location 
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of lymphocyte quiescence. Yet a heroic experiment testing this concept 
was able to demonstrate that MBP-specific T cells re-isolated from the 
CSF were still able to induce EAE upon re-activation prior to transfer 
into naive rats (Schläger et al., 2016).

A deeper transcriptional profile of immune cells using scRNA-seq 
has been applied to animal models of MS to gain greater resolution of 
cell identities and phenotypes within the CSF. A group led by Dr. Gerd 
Meyer zu Hörste employed 10x Genomics sequencing technology to 
characterize the immune cell landscape in different tissues during 
neuroinflammation (Schafflick et al., 2021). Again, the rat was used as 
a model organism in order to obtain sufficient cells from the CSF, in 
this case 100–120 μL per animal. Pooled CSF samples from dozens of 
animals eventually provided sufficient cell numbers for sequencing 
(Heming et al., 2022). Interestingly, naive rats contained proportionally 
more CD4 T cells than blood, CNS parenchyma, or border tissues 
both by flow cytometric as well as scRNA-seq assessment. While a 
roughly five-fold expansion of CD4 T cells within the CSF was 
observed during EAE, further characterization of the T cell phenotype 
in the CSF was not undertaken. Rather, attention was drawn to the 
surprisingly large proportion of B cells found in the dura mater which 
unexpectedly contained immature subsets. These observations fit with 
concurrent reports implicating the meninges as a tissue-specific niche 
for local hematopoietic development and tolerance induction 
(Brioschi et al., 2021; Cugurra et al., 2021). Notably, the frequency of 
B cells in the CSF of naïve rats did not significantly change upon 
induction of EAE, remaining low. Blending experimentation in rats 
with typical active EAE induced in C57BL/6 mice, the Meyer zu 
Hörste group observed phenotypic changes in meningeal B cells 
during disease including reduced proliferation, maturation, and 
promotion of antigen presention (Schafflick et al., 2021). The dramatic 
dynamics of meningeal B cells contrasting with the unwavering 
paucity of B cells in the CSF observed during neuroinflammation 
raises questions regarding the dependence - or lack thereof – between 
border immunity and B cell trafficking in the CSF. While it is likely 
that CSF can mediate inflammatory effects of B cells (Lisak et al., 2012; 
Schropp et al., 2023), particularly in chronic disease (Mitsdoerffer and 
Peters, 2016), whether these changes are reflected by B cells circulating 
in the CSF or by soluble mediators alone remains to be determined. 
Clearly the ability to test hypotheses related to the requirement of CSF 
in meningeal B cell immunity and tissue residence using animal 
models is limited because of scant B cell numbers within the fluid 
compartment of the CNS. Nevertheless, these cutting edge animal 
model studies reflect a conceptual advance in contemplating the 
contribution of B cells in the pathogenesis of MS.

With the shift in focus away from T cells toward B cell 
pathophysiology and therapies in MS (Franciotta et  al., 2008), 
experimentation using various B cell-dependent animal models has 
generated insights into mechanisms of CNS inflammation. For 
instance, ELT development and disruption has been explored 
successfully in multiple murine models (Molnarfi et al., 2013; Dang 
et al., 2015; Häusler et al., 2018; Parker Harp et al., 2019; Brand et al., 
2021). Yet as noted, assessments of CSF B cells to inflammatory and 
therapeutic responses within the CNS during EAE and other models 
of MS have been limited. Indirect evaluation of CSF B cells via 
quantification and analysis of intrathecal antibodies in animal models 
has instead served as a surrogate for CSF B cells. Pursuit of 
immunoglobulin abundance and specificity within the CSF of animals 
with inflammatory demyelination of the CNS has taken place since 

the identification of OCBs as a biomarker of MS. Regrettably, a 
consensus amongst various MS animal models regarding OCBs does 
not exist. Oligoclonal IgG bands synthesized in the CNS compartment 
are present in rats with EAE (Rostrom et al., 2004). More commonly, 
identical banding patterns of immunoglobulins are present in both the 
CSF and serum, which occurred in guinea pigs, SJL mice, and rabbits 
with EAE (Glynn et al., 1982; Whitacre et al., 1982; Franciotta et al., 
2008), although a commonly used relapsing EAE system in SJL mice 
exhibited discernable elevation in the CSF IgG index (Gilli et  al., 
2019). Further investigations into the source and antigenic targets of 
plasmablasts and plasma cells have been illuminating (Rojas et al., 
2019; Pröbstel et al., 2020) and offer additional opportunities to define 
the contribution of B cells to neuroinflammation in animal 
models of MS.

Additional studies using viral models of MS in mice have 
incorporated CSF analyses. Murine models of MS involving 
Coronaviridae [Mouse hepatitis virus (MHV)] and Picornaviridae 
[Theiler’s murine encephalomyelitis virus (TMEV)] have been utilized 
to explore pathogenic mechanisms and therapies for CNS 
inflammatory demyelinating diseases (Libbey and Fujinami, 2021). 
Mice infected with the strain JHM of MHV (MHV-JHM) were used 
as an early demonstration of murine CSF acquisition methodology 
and utility of viral models of MS (Fleming et al., 1983). Cytologic 
analyses of 5–15 μL of CSF revealed a pleocytosis present only in mice 
with clinical impairment that consisted of similar proportions of T 
cells, B cells, and monocytes. Subsequent studies demonstrated an 
accumulation of virus-specific immunoglobulin within 100–200 μL of 
CSF of rats infected as neonates with MHV-JHM (Sorensen et al., 
1984). While advanced flow cytometric profiles of CSF from rodents 
infected with MHV have not been reported, proliferating B cells were 
found within border tissues by immunohistochemistry in mice with 
chronic inflammatory demyelination, although as disease unfolded 
isotype-switched B cells tended to congregate in the parenchyma 
(DiSano et al., 2017), presumably recruited from the periphery in 
order to constrain viral replication and infectious spread (Marques 
et  al., 2011). An immune-mediated, chronic inflammatory 
demyelinating disease also can be induced in mice after infection with 
TMEV. Studies on the role of B cells in TMEV-mediated disease have 
suggested a clonal expansion of B cells within the CNS. Analyzing an 
average of 8–10 μL of CSF per mouse, high levels of IgG were found 
within the CSF in accordance with abundant B cells observed within 
the meningeal and perivascular spaces of the spinal cord, but in the 
absence of appreciable blood–brain barrier disruption (Pachner et al., 
2011; DiSano et al., 2019). These viral systems represent powerful 
alternatives to autoimmune models of MS, yet also lack the in-depth 
profile of CSF B cells that would provide insights into 
compartmentalized inflammation, trafficking, and timing of disease 
activity during MS.

Important work emphasizing the contribution to MS by B cells 
has utilized primate models. In Japanese macaques (Macaca fuscata) 
that develop spontaneous encephalomyelitis, OCBs can be detected 
(Blair et al., 2016). A more popularized model of MS, using the species 
Callithrix jacchus (Kap et al., 2016) has been used to explore the role 
of B cells in MS (Kap et al., 2010, 2011). However, no definitive studies 
on CSF B cells in this EAE model have been reported, likely given the 
miniature stature of marmosets (adults weigh between 250 and 500 g) 
which precludes routine CSF analyses. In contrast, adult rhesus 
monkeys (Macaca mulatta) typically weigh over several kilograms, 
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availing them to CSF studies. Indeed, more contemporary studies 
using EAE in rhesus monkeys include efforts to characterize the 
effects of disease-modifying therapy on leukocyte trafficking in the 
CNS. Analyzing leukocytes obtained via the cisterna magna (typically 
yielding 0.5 mL) using flow cytometry at disease onset demonstrated 
that the CSF infiltrate was composed primarily of T cells and 
monocytes as opposed to B cells (Haanstra et  al., 2013), whereas 
anti-MOG IgG and IgM were localized to the CSF (Haanstra et al., 
2015). While these studies did not include naïve animals, CSF 
leukocytes were likely elevated in comparison to normal ranges of 
basic immune cells in the Rhesus monkey defined by basic cytology 
(Hou et al., 1996). Again, however, perplexing variability amongst 
non-human primate models of MS exists, as cynomolgus monkeys 
(Macaca fascicularis) do not routinely harbor unique OCB within the 
CSF 4 weeks after immunization with spinal cord homogenate 
emulsified in CFA (Gallo et al., 1989). While studies of B cells in these 
higher order models of neuroinflammation add value by uniquely 
modeling MS, questions regarding intrathecal B cells and 
immunoglobulin remain incompletely answered. Overall, pursuing 
the role of B cells in non-human primate models of MS exemplifies 
the challenges stemming from the heterogeneous nature of animal 
models as well as incomplete quantitative measures of CSF 
immune cells.

Other animal systems for modeling MS exist but are not 
commonly used and have employed limited CSF assessment. For 
example, spinal fluid examination during canine EAE identified a 
conspicuous pleocytosis obtained from unmentioned quantities of 
CSF (Moon et al., 2015). An idiopathic, spontaneous CNS disease 
of canines, granulomatous meningo-encephalomyelitis (GME), 
shares some features with MS. In particular, recent work reveals 
substantial meningeal inflammation characterized by large 
collections of B cells resembling tertiary lymphoid structures in a 
variety of dog breeds with GME (Church et al., 2021). While CSF 
evaluation was performed diagnostically but not reported in this 
study, prior reports on GME have demonstrated a mononuclear 
pleocytosis (Lowrie et al., 2013). Potential correlates of meningeal 
inflammation and B cell accumulation within the CNS could 
be  ideally addressed in a larger species such as canines. 
Additionally, unique work exploring the role of CSF in animal 
models of MS has included an evaluation of cell-derived 
microvesicles during EAE. Seen in naive humans without 
inflammatory neurologic diseases, CSF microvesicles were found 
to be significantly more abundant in MS patients with relapses 
compared to those in remission and their levels correlated with the 
number of active lesions identified by MRI (Verderio et al., 2012). 
Modeling this feature of neuroinflammation in rodents, pooled 
CSF samples from rats were analyzed and found to contain 
microvesicles expressing myeloid proteins such as CX3CR1. 
Similar to cellular infiltrates in the CSF during autoimmune 
neuroinflammation, CSF microvesicles correlated with disease 
severity over the course of murine EAE. Whether other cells 
besides microglia contribute to the CSF collection of microvesicles 
and whether they mediate cellular immune effects during MS 
remain to be determined. Overall, the diversity of CSF evaluation, 
both by use of distinct animal models as well as by evaluating 
different immune cellular components, could be of great benefit to 
pursuing pathogenic mechanisms and treatment responses  
for MS.

3. Future aspects and additional 
considerations

The examination and characterization of CSF immune cells in 
various animal models is still quite insufficient relative to its potential 
for shedding light on the immune mechanisms of neuroinflammation 
in MS. Clearly, overcoming limited sample volumes obtained from 
different animals is essential. As shown recently in an elegant study 
exploring the role of alternatively activated neutrophils in 
neuroinflammation, diminutive anatomic tissues can still serve as a 
viable source of immune cells (Sas et  al., 2020). Whether use of 
different species, surgical advancements, exploitation of different 
timing or anatomic routes of CSF sampling, or a combination thereof 
could be sufficient to surmount this barrier should be determined. 
Additionally, flow cytometric bar-coding to pool samples, such as 
during different stages of disease longitudinally or between diseases 
altogether, offers the ability to analyze small batches of cells in a 
merged collection post-hoc. This would mitigate some of the negative 
consequences from pooling of specimens, including contamination 
from one or more samples and/or blunting of biological variability 
(Férard, 1995; Schisterman and Vexler, 2008). Barcoding is integral to 
scRNA-seq, which is expected to be used extensively in future CSF 
studies, both in humans as well as in animal models of MS. Although 
with various limitations (Chen et al., 2019), transcriptomic profiles 
through techniques like scRNA-seq will make small sampling tenable. 
Even more detailed analyses from scRNA-seq facilitates are possible, 
such as antigen receptor sequencing. Quantification of TCR and B cell 
receptor clones from the CSF of various animal models of MS, 
particularly in the context of meningeal inflammation and temporal 
dynamics, will be in line with current studies in MS (Pappalardo et al., 
2020; Ramesh et  al., 2020) and could be  tremendously useful in 
detailing mechanisms of adaptive immune responses difficult to 
ascertain from patients. In terms of CSF myeloid cell studies, the 
dearth of experimentation on animal CSF in models of MS represents 
a major gap in knowledge. Future investigation of myeloid cells and 
their function within the CSF compartment during neuroinflammation 
is very likely to contribute to concrete understanding of discrete roles 
for various BAMs and microglia that could benefit from modeling in 
animals. Addressing questions such as regionality of immune cell 
trafficking within the CSF and regulation of CSF flow by various 
immune cells within the cerebral and spinal fluid compartment in 
animal models of CNS inflammation could be highly valuable to MS 
and other neuroinflammatory conditions. Finally, using animal 
models to integrate cellular CSF characteristics with proteomics, CNS 
architecture, and tissue integrity, are obvious studies to undertake so 
that a more comprehensive viewpoint of inflammatory changes 
occurring in MS can be discerned. Hence, future studies involving 
CSF from various animal models of MS are rife with opportunity to 
parallel ongoing and future patient research and advance the 
understanding of MS causes and treatments.

4. Conclusion

Cellular characterization of the CSF is important to capturing 
unique features of inflammatory demyelination of the CNS and a 
complete understanding of the nature of MS. High dimensional CSF 

https://doi.org/10.3389/fnmol.2023.1143498
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Wu 10.3389/fnmol.2023.1143498

Frontiers in Molecular Neuroscience 06 frontiersin.org

studies have not been fully leveraged in animal models of MS, which 
limits the utility of modeling altogether. Given access from the 
compartment adjacent to the tissue injured by immune responses, 
CSF not only harbors key immune ingredients, but likely mirrors the 
events occurring in the CNS borders and parenchyma during disease. 
Although challenges persist, efforts to build upon current data are 
deemed worthwhile and several current and emerging opportunities 
are available for optimal analysis of CSF from animal models of 
MS. Future CSF studies exploring similarities and differences between 
models will clarify the utility of each model system and ultimately 
lead to translational contributions from animal modeling of MS.
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