58 research outputs found

    Seasonal resource pulses and the foraging depth of a Southern Ocean top predator

    Get PDF
    Seasonal resource pulses can have enormous impacts on species interactions. In marine ecosystems, air-breathing predators often drive their prey to deeper waters. However, it is unclear how ephemeral resource pulses such as near-surface phytoplankton blooms alter the vertical trade-off between predation avoidance and resource availability in consumers, and how these changes cascade to the diving behaviour of top predators. We integrated data on Weddell seal diving behaviour, diet stable isotopes, feeding success and mass gain to examine shifts in vertical foraging throughout ice break-out and the resulting phytoplankton bloom each year. We also tested hypotheses about the likely location of phytoplankton bloom origination (advected or produced in situ where seals foraged) based on sea ice break-out phenology and advection rates from several locations within 150 km of the seal colony. In early summer, seals foraged at deeper depths resulting in lower feeding rates and mass gain. As sea ice extent decreased throughout the summer, seals foraged at shallower depths and benefited from more efficient energy intake. Changes in diving depth were not due to seasonal shifts in seal diets or horizontal space use and instead may reflect a change in the vertical distribution of prey. Correspondence between the timing of seal shallowing and the resource pulse was variable from year to year and could not be readily explained by our existing understanding of the ocean and ice dynamics. Phytoplankton advection occurred faster than ice break-out, and seal dive shallowing occurred substantially earlier than local break-out. While there remains much to be learned about the marine ecosystem, it appears that an increase in prey abundance and accessibility via shallower distributions during the resource pulse could synchronize life-history phenology across trophic levels in this high-latitude ecosystem

    A central place foraging seabird flies at right angles to the wind to jointly optimize locomotor and olfactory search efficiency

    Get PDF
    To increase the probability of detecting odour plumes, and so increase prey capture success, when winds are stable central place foraging seabirds should fly crosswind to maximize the round-trip distance covered. At present, however, there is no empirical evidence of this theoretical prediction. Here, using an extensive GPS tracking dataset, we investigate, for the first time, the foraging movements of Bulwer's petrels (Bulweria bulwerii) in the persistent North Atlantic trade winds. To test the hypotheses that, in stable winds, petrels use crosswind to maximize both the distance covered and the probability of detecting olfactory cues, we combine state-space models, generalized additive models and Gaussian plume models. Bulwer's petrels had the highest degree of selectivity for crosswinds documented to date, often leading to systematic zig-zag flights. Crosswinds maximized both the distance travelled and the probability of detecting odour plumes integrated across the round-trip (rather than at any given point along the route, which would result in energetically costly return flight). This evidence suggests that petrels plan round-trip flights at departure, integrating expected costs of homeward journeys. Our findings, which are probably true for other seabirds in similar settings, further highlight the critical role of wind in seabird foraging ecology.info:eu-repo/semantics/acceptedVersio

    Terrain Features and Architecture of Wolverine (Gulo gulo) Resting Burrows and Reproductive Dens on Arctic Tundra

    Get PDF
    Burrowing species rely on subterranean and subnivean sites to fulfill important life-history and behavioral processes, including predator avoidance, thermoregulation, resting, and reproduction. For these species, burrow architecture can affect the quality and success of such processes, since characteristics like tunnel width and chamber depth influence access by predators, thermal insulation, and energy spent digging. Wolverines (Gulo gulo) living in Arctic tundra environments dig burrows in snow during winter for resting sites and reproductive dens, but there are few published descriptions of such burrows. We visited 114 resting burrows and describe associated architectural characteristics and non-snow structure. Additionally, we describe characteristics of 15 reproductive den sites that we visited during winter and summer. Although many resting burrows were solely excavated in snow, most incorporated terrain structures including cliffs, talus, river shelf ice, thermokarst caves, and stream cutbanks. Burrows typically consisted of a single tunnel leading to a single chamber, though some burrows had multiple entrances, branching tunnels, or both. Tunnels in resting burrows were shorter than those in reproductive dens, and resting chambers were typically located at the deepest part of the burrow. Reproductive dens were associated with snowdrift-forming terrain features such as streambeds, cutbanks on lake edges, thermokarst caves, and boulders. Understanding such characteristics of Arctic wolverine resting and reproductive structures is critical for assessing anthropogenic impacts as snowpack undergoes climate-driven shifts.Les espèces fouisseuses dépendent de lieux enfouis sous la terre et sous la neige pour satisfaire leurs importants processus de vie et de comportement, y compris l’évitement des prédateurs, la thermorégulation, le repos et la reproduction. Pour ces espèces, l’architecture des terriers peut avoir des effets sur la qualité et la réussite des processus, car des caractéristiques comme la largeur des tunnels et la profondeur des chambres influencent l’accès aux terriers par les prédateurs, l’isolation thermique et l’énergie dépensée pour creuser. L’hiver, les carcajous (Gulo gulo) qui vivent dans les environnements de la toundra de l’Arctique creusent des terriers dans la neige afin de s’en servir comme aires de repos et comme tanières de reproduction. Cependant, peu de descriptions de tels terriers ont été publiées. Nous avons visité 114 terriers de repos, puis nous avons décrit leurs caractéristiques architecturales et les structures connexes n’étant pas recouvertes de neige. Par ailleurs, nous décrivons les caractéristiques de 15 tanières de reproduction que nous avons visitées en hiver et en été. Même si de nombreux terriers de repos ont été uniquement creusés dans la neige, la plupart des terriers incorporaient des structures topographiques, dont des falaises, des talus, de la glace de banquise, des grottes thermokarstiques et des hautes berges de cours d’eau. En général, les terriers étaient composés d’un seul tunnel menant à une seule chambre, bien que certains avaient plusieurs entrées, des galeries, ou les deux. Les tunnels des aires de repos étaient moins longs que ceux des tanières de reproduction, et les chambres de repos étaient généralement situées dans la partie la plus profonde des terriers. Les tanières de reproduction étaient installées dans des caractéristiques topographiques où s’amoncelle la neige, comme les lits de cours d’eau, les hautes berges de lacs, les grottes thermokarstiques et les rochers. Il est essentiel de comprendre les caractéristiques des structures de repos et de reproduction des carcajous de l’Arctique afin d’être en mesure d’évaluer les incidences anthropiques au moment où le manteau neigeux subit des changements liés au climat

    Using Satellite Tracking to Optimize Protection of Long-Lived Marine Species: Olive Ridley Sea Turtle Conservation in Central Africa

    Get PDF
    Tractable conservation measures for long-lived species require the intersection between protection of biologically relevant life history stages and a socioeconomically feasible setting. To protect breeding adults, we require knowledge of animal movements, how movement relates to political boundaries, and our confidence in spatial analyses of movement. We used satellite tracking and a switching state-space model to determine the internesting movements of olive ridley sea turtles (Lepidochelys olivacea) (n = 18) in Central Africa during two breeding seasons (2007-08, 2008-09). These movements were analyzed in relation to current park boundaries and a proposed transboundary park between Gabon and the Republic of Congo, both created to reduce unintentional bycatch of sea turtles in marine fisheries. We additionally determined confidence intervals surrounding home range calculations. Turtles remained largely within a 30 km radius from the original nesting site before departing for distant foraging grounds. Only 44.6 percent of high-density areas were found within the current park but the proposed transboundary park would incorporate 97.6 percent of high-density areas. Though tagged individuals originated in Gabon, turtles were found in Congolese waters during greater than half of the internesting period (53.7 percent), highlighting the need for international cooperation and offering scientific support for a proposed transboundary park. This is the first comprehensive study on the internesting movements of solitary nesting olive ridley sea turtles, and it suggests the opportunity for tractable conservation measures for female nesting olive ridleys at this and other solitary nesting sites around the world. We draw from our results a framework for cost-effective protection of long-lived species using satellite telemetry as a primary tool

    Behavioral genomics of honeybee foraging and nest defense

    Get PDF
    The honeybee has been the most important insect species for study of social behavior. The recently released draft genomic sequence for the bee will accelerate honeybee behavioral genetics. Although we lack sufficient tools to manipulate this genome easily, quantitative trait loci (QTLs) that influence natural variation in behavior have been identified and tested for their effects on correlated behavioral traits. We review what is known about the genetics and physiology of two behavioral traits in honeybees, foraging specialization (pollen versus nectar), and defensive behavior, and present evidence that map-based cloning of genes is more feasible in the bee than in other metazoans. We also present bioinformatic analyses of candidate genes within QTL confidence intervals (CIs). The high recombination rate of the bee made it possible to narrow the search to regions containing only 17–61 predicted peptides for each QTL, although CIs covered large genetic distances. Knowledge of correlated behavioral traits, comparative bioinformatics, and expression assays facilitated evaluation of candidate genes. An overrepresentation of genes involved in ovarian development and insulin-like signaling components within pollen foraging QTL regions suggests that an ancestral reproductive gene network was co-opted during the evolution of foraging specialization. The major QTL influencing defensive/aggressive behavior contains orthologs of genes involved in central nervous system activity and neurogenesis. Candidates at the other two defensive-behavior QTLs include modulators of sensory signaling (Am5HT(7) serotonin receptor, AmArr4 arrestin, and GABA-B-R1 receptor). These studies are the first step in linking natural variation in honeybee social behavior to the identification of underlying genes

    Incorrect likelihood methods were used to infer scaling laws of marine predator search behaviour

    Get PDF
    Background: Ecologists are collecting extensive data concerning movements of animals in marine ecosystems. Such data need to be analysed with valid statistical methods to yield meaningful conclusions. Principal Findings: We demonstrate methodological issues in two recent studies that reached similar conclusions concerning movements of marine animals (Nature 451:1098; Science 332:1551). The first study analysed vertical movement data to conclude that diverse marine predators (Atlantic cod, basking sharks, bigeye tuna, leatherback turtles and Magellanic penguins) exhibited "Levy-walk-like behaviour", close to a hypothesised optimal foraging strategy. By reproducing the original results for the bigeye tuna data, we show that the likelihood of tested models was calculated from residuals of regression fits (an incorrect method), rather than from the likelihood equations of the actual probability distributions being tested. This resulted in erroneous Akaike Information Criteria, and the testing of models that do not correspond to valid probability distributions. We demonstrate how this led to overwhelming support for a model that has no biological justification and that is statistically spurious because its probability density function goes negative. Re-analysis of the bigeye tuna data, using standard likelihood methods, overturns the original result and conclusion for that data set. The second study observed Levy walk movement patterns by mussels. We demonstrate several issues concerning the likelihood calculations (including the aforementioned residuals issue). Re-analysis of the data rejects the original Levy walk conclusion. Conclusions: We consequently question the claimed existence of scaling laws of the search behaviour of marine predators and mussels, since such conclusions were reached using incorrect methods. We discourage the suggested potential use of "Levy-like walks" when modelling consequences of fishing and climate change, and caution that any resulting advice to managers of marine ecosystems would be problematic. For reproducibility and future work we provide R source code for all calculations

    Data from: Male harassment, female movements, and genetic diversity in a fragmented metapopulation

    No full text
    Interactions with males often alter the short‐term behaviors of reproductive females. Yet, the influence of different internal and external factors, such as sexual conflict, on animal movement and patch dynamics is not well understood. We studied associations between courtship, movements of reproductive females, and genetic diversity in a small, fragmented network of Euphydras editha taylori (Taylor's checkerspot butterfly). In the absence of courtship, female movements (step lengths) were restricted (< 2 m) and tortuous, and females never departed reproductive habitat. However, when courted by males, step lengths increased markedly and movements were straighter (less tortuous). Female habitat departures were associated with interactions between patch identity and courtship. All tracked females remained in reproductive habitat in the smallest patch, whereas 32% of females departed the larger patch (over forest) while eluding courting males. Genotyping (simple sequence repeats ‐ SSRs) suggested low levels of genetic differentiation (Fst ~ 0.02; Analysis of molecular variance p = 0.02) with inter‐patch distances of ≤ 0.3 km. Tests for a recent genetic bottleneck were negative, but heterozygous deficient deviations from Hardy‐Weinberg Equilibrium expectations may indicate a developing bottleneck. Patch‐specific female movement behaviors and the distribution of SSR alleles across the network suggest the possibility of a predominantly unidirectional transfer of reproducing females from the largest to smaller patches, with the smaller patches mostly closed to emigration. Our study suggests short‐lived intraspecific interactions may influence dispersal in unanticipated ways and that understanding these interactions will provide a more holistic view of habitat fragmentation and network functioning

    Low relative error in consumer-grade GPS units make them ideal for measuring small-scale animal movement patterns

    No full text
    Consumer-grade GPS units are a staple of modern field ecology, but the relatively large error radii reported by manufacturers (up to 10 m) ostensibly precludes their utility in measuring fine-scale movement of small animals such as insects. Here we demonstrate that for data collected at fine spatio-temporal scales, these devices can produce exceptionally accurate data on step-length and movement patterns of small animals. With an understanding of the properties of GPS error and how it arises, it is possible, using a simple field protocol, to use consumer grade GPS units to collect step-length data for the movement of small animals that introduces a median error as small as 11 cm. These small error rates were measured in controlled observations of real butterfly movement. Similar conclusions were reached using a ground-truth test track prepared with a field tape and compass and subsequently measured 20 times using the same methodology as the butterfly tracking. Median error in the ground-truth track was slightly higher than the field data, mostly between 20 and 30 cm, but even for the smallest ground-truth step (70 cm), this is still a signal-to-noise ratio of 3:1, and for steps of 3 m or more, the ratio is greater than 10:1. Such small errors relative to the movements being measured make these inexpensive units useful for measuring insect and other small animal movements on small to intermediate scales with budgets orders of magnitude lower than survey-grade units used in past studies. As an additional advantage, these units are simpler to operate, and insect or other small animal trackways can be collected more quickly than either survey-grade units or more traditional ruler/gird approaches
    corecore