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Abstract

Background: Ecologists are collecting extensive data concerning movements of animals in marine ecosystems. Such data
need to be analysed with valid statistical methods to yield meaningful conclusions.

Principal Findings: We demonstrate methodological issues in two recent studies that reached similar conclusions
concerning movements of marine animals (Nature 451:1098; Science 332:1551). The first study analysed vertical movement
data to conclude that diverse marine predators (Atlantic cod, basking sharks, bigeye tuna, leatherback turtles and
Magellanic penguins) exhibited ‘‘Lévy-walk-like behaviour’’, close to a hypothesised optimal foraging strategy. By
reproducing the original results for the bigeye tuna data, we show that the likelihood of tested models was calculated from
residuals of regression fits (an incorrect method), rather than from the likelihood equations of the actual probability
distributions being tested. This resulted in erroneous Akaike Information Criteria, and the testing of models that do not
correspond to valid probability distributions. We demonstrate how this led to overwhelming support for a model that has
no biological justification and that is statistically spurious because its probability density function goes negative. Re-analysis
of the bigeye tuna data, using standard likelihood methods, overturns the original result and conclusion for that data set.
The second study observed Lévy walk movement patterns by mussels. We demonstrate several issues concerning the
likelihood calculations (including the aforementioned residuals issue). Re-analysis of the data rejects the original Lévy walk
conclusion.

Conclusions: We consequently question the claimed existence of scaling laws of the search behaviour of marine predators
and mussels, since such conclusions were reached using incorrect methods. We discourage the suggested potential use of
‘‘Lévy-like walks’’ when modelling consequences of fishing and climate change, and caution that any resulting advice to
managers of marine ecosystems would be problematic. For reproducibility and future work we provide R source code for all
calculations.
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Introduction

Technological advances are revealing new insights regarding

animal movements in marine ecosystems [1,2]. Devices attached

to animals are becoming smaller in size yet larger in memory

capacity [1], and are yielding huge data sets. Given the time, effort

and expense devoted to obtaining data from individuals in the

marine environment, it is imperative to analyse the data with valid

statistical methods. This is particularly important because conclu-

sions concerning animal movement may have management

implications [3]. For example, analyses can reveal diel behaviour

of critically endangered leatherback turtles during migrations that

traverse fishing areas [4], or estimate time spent by Atlantic cod in

marine protected areas [5].

One approach to analysing movement data is in the context of

Lévy flights and Lévy walks. Lévy flights are random walks for

which each movement step is drawn from a probability

distribution that has a heavy power-law tail [6]. The original

ecological concept [7] was of movement steps being defined as

distances between feeding events, although a variety of definitions

have since been used [8]. Draws are usually assumed to be

independent, such that there is no correlation between consecutive

steps and earlier steps do not influence later ones (though see [9]).

The power-law tail means that occasionally there will be a very

large step. The resulting pattern is of clusters of steps that are

connected by the rare long steps. The clusters themselves consist of

smaller clusters of even shorter steps connected by longer steps,

and so on to give a repeating pattern at multiple scales. Lévy walks

are similar, the difference concerns the assumption of time taken to
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complete each given step, and in ecology these terms have become

used somewhat interchangeably [10]. The ecological interest arises

from the demonstration that, under certain conditions, a Lévy

flight with an exponent of two represents an optimal foraging

strategy [11] (and see [12] for further background). Note that such

optimality is in the context of random walks with independent and

identically distributed step lengths drawn from a power-law

distribution, and has recently been shown to be sensitive to

assumptions [10].

The first step to identify Lévy movement patterns involves

correctly testing whether the movement data are consistent with

coming from a distribution with a heavy power-law tail (here,

‘heavy’ means that the distribution has infinite variance). This

testing has long been done using regression-based techniques,

though these have been shown to be inaccurate and problematic

[13–16]; for a geological context see [17,18], and for a general

context see [19,20]. Likelihood methods, a cornerstone of modern

statistical ecology [21], have recently been shown to correctly infer

exponents of power-law distributions in ecological contexts

[15,16].

Recent work [8] re-analysed 17 data sets from 7 other studies,

which had all concluded that the foragers being studied exhibited

Lévy flight movement patterns. The foragers ranged in size from

microzooplankton [22] to fishermen [23,24]. The re-analysis,

using likelihood methods, overwhelmingly rejected the originally

concluded power-law Lévy flight model for 16 out of the 17 data

sets when tested against three other simple models. For only one

data set (a single grey seal in the North Atlantic Ocean [25]), the

data were found to be consistent with coming from a bounded

power-law (or truncated Pareto) distribution, which is consistent

with a truncated Lévy flight model. However, this does not

necessarily then mean that the animal is using a Lévy flight search

strategy, and the data set (distances moved in a day) had a sample

size of only 71 and only spanned one order of magnitude (7.5 km

to 78 km), which limits any interpretation of movement on

multiples scales. For further background on the use of Lévy walks/

flights in ecology, see a recent book [12] (reviewed in [26]) and

review paper [10].

Given the aforementioned results, it is prudent to verify that the

techniques applied in related works are valid. Here we investigate

the methods used in recent studies concerning movements of

marine predators [27] and mussels [28].

In [27], over a million vertical movement displacements were

analysed, leading to the conclusion that diverse marine predators

(Atlantic cod, basking sharks, bigeye tuna, leatherback turtles and

Magellanic penguins) exhibited ‘‘Lévy-walk-like behaviour’’. This

study has been cited 160 times (ISI Web of Knowledge as of 26th

April 2012); for further context see [29]. The second study [28]

concluded that Lévy walks evolve through interaction between

movement and environmental complexity, based on experiments

and models concerning movements of mussels (and was followed

up by [30–32], which we also discuss).

Both studies used likelihood methods to analyse data and reach

conclusions. However, we demonstrate three issues with the

likelihood calculations; each applies to one or both studies. For

clarity, we focus on each study in turn.

Using correct likelihood methods we first re-analyse an example

data set from [27] – vertical movements of bigeye tuna. We find no

support for a power-law (Pareto) distribution when compared to a

simple exponential distribution. This is in contrast to the original

finding of close resemblance to an inverse-square power law. This

demonstrates that the methodological issues we describe are not

just minor technicalities but can yield the opposite biological

conclusions to standard methods.

Issue one is that likelihood was calculated in [27] from the

residuals of regression fits of models, rather than from the

likelihood equation of the underlying probability distribution being

tested. Such regression fits result in the testing of models that do

not correspond to normalised probability distributions (Issue two).

This approach resulted, for [27], in the conclusion of overwhelm-

ing support for a ‘‘quadratic’’ model (for the bigeye tuna data and

for four of the other six species). Yet we show that the quadratic

model is spurious because its probability density function has

negative values (Issue three); it also has no biological justification.

The results of our re-analysis of the bigeye tuna data contradict

the original conclusions for those data. The problems identified

here with the original methods of [27] consequently question the

original results for the other data sets and thus question the central

conclusion of ‘‘scaling laws of marine predator search behaviour’’.

Note that we have not re-analysed the remaining data sets in [27],

and so do not make definitive conclusions regarding them.

We then describe some methodological issues of [28] and

demonstrate how likelihood was also incorrectly calculated from

regression fits (Issue one). Re-analysis of the data finds that

although a truncated Lévy walk is more supported by the data

than an alternative exponential model, it is decisively rejected by

goodness-of-fit tests as being a suitable model. Thus we do not

agree with the original conclusion of Lévy walk movements of the

mussels.

We also discuss some aspects of the methods in another study

[33] that analysed marine predator movements. We end by

showing that Issue one also occurred in a recent example from

terrestrial ecology [34], which concluded an exponential model

was preferred over a Lévy model. Thus, the issues we present are

not restricted to studies of marine animals, or to those that support

the Lévy idea.

The issues we demonstrate reinforce that likelihood, as with all

methods in ecology, must be used properly, and that claims of

Lévy movements by animals do not always hold up to scrutiny.

The prevalence of important methodological errors in high-profile

papers that test for Lévy movement patterns is problematic,

leading to incorrect biological conclusions. This negatively impacts

the general field of movement ecology, and could have undesirable

consequences if conclusions from such studies influence manage-

ment decisions concerning marine ecosystems.

All computations used R version 2.9.2 or later [35]. To allow

other researchers to more easily use our methods in the future and

reproduce all our results, we provide R source code (see

Supporting Information) for all calculations and figures, a practice

recommended by [36].

Analyses and Results

Marine Predator Movements in Ref. [27]
In [27], electronic tags were attached to marine predators,

resulting in over a million vertical movement displacements. The

principal result was that, for five species, model fits of the

frequency distributions of vertical movements ‘‘closely resembled

an inverse-square power law with a heavy tail of increasingly

longer steps intermittently distributed within the time series that is

typical of ideal Lévy walks’’ [27]. The five species were Atlantic

cod, basking sharks, bigeye tuna, leatherback turtles and

Magellanic penguins. The inverse-square power law relates to

the aforementioned theoretical optimal foraging strategy, and it is

striking that movements of such diverse predators should closely

follow such a power law. For the two other species tested, catsharks

and elephant seals, ‘‘Lévy-like’’ processes were not concluded.

However, here we demonstrate three problems with the likelihood
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methods used to obtain the results, and thus question the overall

conclusions.

We first re-analyse the bigeye tuna (Thunnus obesus) data set from

ref. [27]; data (all three individuals pooled together) courtesy of D.

Sims. The data set consists of 29,900 vertical displacement steps,

defined as follows: ‘‘the change in selected water-column depth

between consecutive time intervals, u(t), was calculated to derive a

time series of vertical displacement (move) steps for each

individual’’ (Methods section of [27]). Steps were measured in

metres, with each time interval being 1 minute. The bigeye tuna

data set appears to be the largest of the data sets analysed in [27]

(vertical axes of Supplementary Figure 1 and page 4 of

Supplementary Information of [27]).

To compare models in [27], ‘‘The relative likelihoods of

candidate models were calculated using AICc weights [37]’’ (page

1 of Supplementary Methods of [27]), where AICc is the small

sample Akaike Information Criterion. This would indeed appear

to be the logical way to compare candidate statistical models

[14,37].

However, the resulting AICc weights (henceforth termed Akaike

weights) were calculated using four methods (described below),

yielding four sets of results. Akaike weights are based on likelihood

functions, and the models being tested are simple probability

distributions with one unknown parameter. Therefore the

likelihood functions are uniquely defined and have analytical

solutions for maximum likelihood estimates, and so we did not

understand the need for multiple methods.

Note that two further methods (involving root-mean square

fluctuations and power-spectrum analysis) were used in [27] to test

for the presence of long-term correlations that may also

characterize scale-invariant Levy walks, but here we focus on

the methods that were used to fit power-law distributions of

movements, determine the power-law exponent m, and compare

with alternative distributions.

Re-analysis using standard likelihood methods and

Akaike weights. First, we compare the support for four models

using likelihood functions. Full R code for these calculations is

given in the Supporting Information (code S1 and code S3). The

models and corresponding probability density functions f (x) for

movements of length x, are [8,14]: (i) the classic Lévy flight model

of an unbounded power-law tail (PL model)

f (x)~Cx{m, x§a, ð1Þ

with exponent m, minimum movement length a and normalisation

constant C~(m{1)am{1; (ii) the simplest alternative of an

unbounded exponential tail (Exp)

f (x)~le{l(x{a), x§a, ð2Þ

with parameter l; (iii) a bounded power law (PLB)

f (x)~Cx{m, x[½a,b�, ð3Þ

where b is the maximum allowable value of the data for the

bounded models and normalisation constant

C~(m{1)=(a1{m{b1{m) for m=1 and C~1=( log b{ log a)
for m~1 (see [8]); (iv) a bounded exponential distribution (ExpB)

f (x)~Ae{lx, x[½a,b�, ð4Þ

with normalisation constant A~l=(e{la{e{lb).

The Lévy flight hypothesis is that the distribution of movements

has a power-law tail with 1vmƒ3. This is the PL model (1), and

the hypothesis is not directly concerned with data that are va.

The PL model with m~2 corresponds to the inverse-square

power-law that [27] found close resemblance to for five species.

The exponential distribution (2) represents the simple hypothesis

that each movement step terminates with a constant probability

per unit time [16,38]. Ref. [27] found an exponential distribution

to be supported for only two species (catshark and elephant seal).

The bounded versions of the two distributions are tested here

due to previous lack of support for the unbounded power-law

model [8,14,16]. For the two bounded models, the upper bound b

was set to the maximum movement length. For all models, the

lower bound a was set to the minimum movement length (as

assumed by [27]). Note that for the PLB model (3), mƒ1 is

permitted (unlike for the PL model (1)), and that m~0 gives the

uniform distribution.

Figure 1. Rank/frequency plots of bigeye tuna data with
distributions fitted here using likelihood. (A) Logarithmic axes.
Black circles are the 29,900 data points, as shown in Supplementary
Figure 1(h) of [27]. The four distributions fitted here are power law (blue
straight line), exponential (red curved line), bounded power law (blue
dashed curved line), and bounded exponential (red dashed curved line,
indistinguishable from exponential). (B) As for (A), but on linear axes to
eliminate distortion due to the logarithmic axes. Our Akaike weight
analysis found the exponential distribution to be the most supported
model, but goodness-of-fit tests, using the two alternative binning
methods described in [8], both yield P~0 (with respective degrees of
freedom of 82 and 6 and goodness-of-fit values of 41,532 and 4,589).
Thus the data are not consistent with the exponential distribution.
doi:10.1371/journal.pone.0045174.g001
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We use the unique likelihood functions of the respective

probability distributions to find the maximum likelihood estimates

for the parameters, which are used to plot the distributions and

compute standard Akaike weights [37]. The log-likelihood

functions are explicitly derived as equations (5) and (6) in [14],

and equations (A.23) and (A.27) in [8]. The equations are based on

standard likelihood theory [37,39]. The Akaike weight calculations

are also given in [14]. The Akaike weight for a model is considered

as the weight of evidence in favour of that model being the best

model for the given data set, out of the models considered. By

definition, Akaike weights for the tested models sum to 1. We also

perform a goodness-of-fit test on the best model to see if it is indeed

a suitable descriptor of the data [14,40,41], using the methods

described in [8].

Figure 1(A) shows the bigeye tuna data set plotted as a rank/

frequency plot on logarithmic axes; Figure 1(B) is the same plot on

linear axes. Supplementary Figure 1(h) of [27] is such a plot also

on logarithmic axes (though the model fits, discussed shortly, are

different). Such logarithmic axes are used in power-law studies

because data from a power-law distribution would appear straight

(with some curvature in the tail, e.g. Figure 1(d) of [16]).

The distributions shown in Figure 1 use the respective

maximum likelihood estimates for the parameters. None of the

models appear to fit the data particularly well, especially for

movements w40m. The power-law models over-estimate the

magnitude of longer moves (the blue curves decay away too

slowly), whereas the exponential models under-estimate them (the

red curves decay away too fast); though bear in mind that the bulk

of the data set comprises movements v40m.

From the maximum likelihood estimates, we calculate standard

Akaike weights [14,37]. We find the power-law distribution has no

support (Akaike weight of 0) compared to the exponential

distribution (Table 1, method a). For ease of comparison with

the results of [27], that did not consider bounded models, in Table

1 we only present our calculated Akaike weights for the

unbounded models; when comparing all four models in the order

given in (1)-(4), the Akaike weights are 0,0:73,10{189 and 0:27,

such that bounded power law also has no support (Akaike weight

of 10{189).

Our result contradicts the Akaike weights calculated in [27],

which were derived using four methods (denoted b - e in Table 1).

Methods b - d in Table 1 involved fitting regressions to

logarithmically-plotted binned data, with c and d concluding

overwhelming support for the power-law model over the

exponential (Table 1). A ‘‘quadratic model’’ was introduced for

the rank/frequency method (e). All methods tested the models

over the full range of the data (e.g. Fig. 1 of [27]), as we have done

here. The contradictory weights arise from three issues that we

illustrate below for the rank/frequency method (e).

Note that Methods b and d involved considering the three

individual tuna separately – given that we used the pooled data

our results are directly comparable to those for methods c, e and f
(though our methods could be applied to the individual data sets).

However, the issues that we identify hold for all methods. Also, for

method e, Bayesian, rather than Akaike, weights were calculated

in [27], but this is tangential to the issues we now describe (see

Methods).

Issue one: likelihoods were computed from linear fits of

models, rather than from the underlying probability

distributions being tested. For the rank/frequency method

(Table 1, method e) movement steps, x, were put in descending

order such that their respective ranks were given by y~1,2,3,:::,n;

y(x) thus represents the number of steps §x. The exponential

model was tested by fitting a straight line to log10 y against x (page

4 of Supplementary Information of [27]). Thus,

log10 y~axzb ð5Þ

where a and b are the fitted coefficients. For the tuna data (sample

size n~29,900), we obtain a~{0:0169 and b~4:40 using linear

regression, and compute a log-likelihood of 29,016.7 using the

logLik() function in R [35]. This reproduces the log-likelihood

value in Supplementary Table 7 of [27]. Whether this is the exact

approach used in [27] could not be confirmed by the authors when

queried, but our calculation exactly agrees with the reported value.

We also exactly reproduce the other two log-likelihood values

reported for bigeye tuna in Supplementary Table 7 of [27]. Full R

code for Issues one to three is given in the Supporting Information

(code S2).

However, this log-likelihood calculation is based on the standard

assumption of Gaussian errors when fitting a straight line. Since

y(x) are ranks 1,2,3,:::,n, the interpretation of such errors is

problematic. More importantly, the resulting log-likelihood

corresponds to the likelihood of the observed residuals around

the fitted straight line assuming a Gaussian residual model, rather

than the likelihood of the observed data coming from the

exponential probability distribution (which is the hypothesis being

tested). The resulting log-likelihood depends on the sum of squared

residuals around the fitted line, given on page 12 of [37] as

Table 1. Akaike weights for North Pacific bigeye tuna data.

Method Power-law model Exponential model Quadratic model

a, Maximum likelihood (calculated here) 0 1 –

b, Supplementary Table 3 of [27] 0.769 0.231 –

c, Supplementary Table 4 of [27] .0.999 ,0.001 –

d, Supplementary Table 5 of [27] .0.999 ,0.001 –

e, Supplementary Table 6 of [27] ,0.0001 ,0.0001 ,1.000

f, As for e but no quadratic model 0 1 –

a, Properly defined Akaike weights [37], calculated here from the raw data (all individuals pooled together) using the equations in Box 1 of [14]. Respective log-
likelihoods are {118,126 and {116,297, giving Akaike Information Criteria of 236,256 and 232,599. b, Data for each individual were binned using the log-binning with
normalization (LBN, [13]) technique, and regression lines fitted to all the points plotted on one figure (see Supplementary Fig. 3 of [27]). c, LBN method for all individuals
pooled together [27]. d, LBN method with generalised linear mixed-effect models, using individual as a random factor [27]. e, Bayesian (rather than Akaike) Information
Criteria [37] weights based on fitting linear regressions to rank/frequency plots [27] for all individuals pooled together. f, Same method as e but calculated here for just
two models (result can also be deduced from Supplementary Table 7 of [27]).
doi:10.1371/journal.pone.0045174.t001
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log (likelihood)~{
n

2
log (ŝs2){

n

2
log (2p){

n

2
ð6Þ

where ŝs2 is the maximum likelihood estimate of the variance of the

assumed Gaussian errors and is given by ŝs2~RSS=n, where RSS

is the residual sum of squares of the errors (see also page 172 of

[39]).

Calculations from the data give ŝs2~0:00840615, yielding a log-

likelihood from (6) of 29,016.7, matching the value given by [27]

and the aforementioned value calculated using the R function

logLik(). Inspection of the source code of logLik(), by

typing stats:::logLik.lm in R, confirms that it does use (6)

to give a log-likelihood value. This is the correct approach if testing

a functional relationship, whereby y(x) is a function of x (and

Gaussian errors are assumed). But the situation here requires the

testing of a probability distribution, whereby f (x) is the probability

density function of x.

Thus, 29,016.7 is not the log-likelihood of the exponential

distribution, which we calculate to be {116,297. The latter is what

should be used when computing Akaike (and Bayesian) weights to

compare probability distributions [37]. Using this value, with the

corresponding value of {118,126 for the power-law distribution,

gives the aforementioned Akaike weight of 1 for the exponential

model, and no support for the power-law model (Table 1).

Issue two: the tested models are not normalised

probability distributions. The above regression approach is

fitting a model for which the associated probability density

function is

f (x)~Cle{l(x{a), x§a, ð7Þ

where a is the minimum value of x, l~{a ln 10 and

C~10be{la=n. We know that a~3 from the data. The derivation

of (7) is given later in Methods.

Equation (7) requires C~1 to be a correctly normalised

exponential distribution; otherwise
Ð?

a
f (x)dx=1. However, the

regression calculation gives a~{0:0169 and b~4:40, leading to

l~0:039 and C~0:74=1. There is no constraint on the

regression coefficients a and b to correctly normalise the

probability density function such that it integrates to one.

Graphically, this can be seen in Fig. 2c of ref. [27] and

Supplementary Fig. 1 of ref. [27] – the red curves representing the

fitted exponential distributions do not start at the left-most data

point. For correctly normalised distributions they would, because

the number of predicted values § the minimum data value will,

by definition, equal the sample size; this can be seen for all the

estimated distributions in our Figure 1. For the aforementioned

Fig. 2c of [27], the fitted distribution predicts only ,400 values §

the minimum value, but the data set consists of 1025 such values.

So the reported log-likelihood from the incorrect regression

method (reproduced above) relates to a function that is not an

exponential distribution. The estimated value of l~0:039 differs

from the correct maximum likelihood estimate (e.g. [14]), which is

simply l̂l~1=(Sx=n{a)~0:056.

Issue three: the quadratic model obscured support for

the exponential model over the power-law model. The

weights for the power-law and exponential models were not

directly compared for the rank/frequency method [27], yet they

were for the other methods. Instead, on page 4 of the

Supplementary Information of [27], ‘‘a quadratic model

½log10 (y)* log10 (x)z log (x)2� describing intermediate behav-

iour’’ between the power law and exponential was introduced. All

three models were compared, rather than just the exponential and

power law. The quadratic model was found to be overwhelmingly

supported for the tuna data (using Bayesian weights; Table 1, e)

and for five of the other seven movement data sets (Supplementary

Table 6 of [27]), yet was not referred to in the main text of [27].

However, this model also corresponds to an invalid probability

density function. Similar calculations to those described for (7) give

the resulting probability density function

f (x)~{
10k

n
xh log10 xzc{1 2h log10 xzcð Þ, x§a, ð8Þ

obtained by writing log10 y~c log10 xzh( log10 x)2zk to fit the

quadratic model on log10 axes, where c,h and k are the regression

coefficients; see the Methods for the full derivation. Multiple linear

regression [21] gives c~0:818,h~{0:752 and k~4:19, (and the

residual-based log-likelihood of 40,526.4, reproducing that in

Supplementary Table 7 of [27]). These coefficients give

Figure 2. Probability density functions for the bigeye tuna
data, corresponding to the model fits calculated using
regression in [27]. (A) Functions start from the value x~a~3, the
minimum value of the data. Blue is the power-law model (it reaches
0.52 at x~3), red is the exponential and black is the quadratic model
given by (8). The density function for the quadratic model goes
negative, violating a fundamental requirement of probability density
functions. (B) Plotting the quadratic model on the same axes (though
magnified) as Figure 1(B) further demonstrates the issue. For example,
as highlighted by the circles, the model erroneously predicts more
movements §4:0m than §3:0m, a clear contradiction.
doi:10.1371/journal.pone.0045174.g002
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y(x~a)~25,603=n, showing that (8) is not a normalised

probability density function.

The curves given by (7) and (8) (and (9) which is defined below)

are plotted in Figure 2, to see how the models compare when

plotted as probability density functions. Given the quadratic

model’s highly nonlinear formulation (8), we anticipated that it

might have a hump shape, unlike the decreasing power-law and

exponential functions. However, Figure 2 shows that it actually

takes negative values. The negative values violate the fundamental

property that a probability density function must be §0. An

analogy would be to say that a tossed coin has a probability of 0.5

of landing heads, and a probability of {0:2 of landing tails.

Figure 2(B) magnifies the start of the quadratic function plotted

on rank/frequency axes (blowing up the start of Supplementary

Figure 1(h) of [27], but without logarithmic axes). The negative

density function means that the model predicts 25,603 moves

§3m, yet almost 200 more (25,801) moves §3:5m, and then

25,649 moves §4m. Obviously, a model should not predict more

moves §4m than it does moves §3m. The fundamental reason

that this problematic situation arose is that a quadratic function,

which is hump-shaped, was fitted to a rank/frequency plot, which

by definition cannot be hump-shaped (it must be non-increasing).

We agree that the quadratic model ‘‘has no particular statistical

or biological justification’’ (page 4 of Supplementary Information

of [27]). Without it, we find that the erroneous rank/frequency

method of [27] actually favours the exponential model (Table 1, f)
for the tuna data. This conclusion was obscured by the

introduction of the third (quadratic) model.

Had the quadratic model been a valid model (i.e., a properly

normalised non-negative probability density function), and been

justified as an intermediate model between the power law and

exponential models, then the support found for this model should

also have implied no support for the Lévy hypothesis (because it is

an intermediate model). However, [27] found the quadratic model

to be the best supported for all data except for two of the

predators, and said that this indicated ‘‘intermediate behaviour

and Lévy-like movement as assessed using rank-frequency plots’’

(page 5 of the Supplementary Information of [27]).

Issues one and two also apply to the power-law model. Setting

h~0 in (8) and substituting c~1{m (where m is the traditional

power-law exponent) gives

f (x)~
10k

n
(m{1)x{m, x§a: ð9Þ

To be the normalised power-law probability density function (1)

requires 10k=n~am{1, and hence there should only be one

estimated parameter, m. Again, there is no reason why the

regression coefficients c(~1{m) and k should give the correct

normalisation. This seems to be an additional, yet generally

overlooked, problem with using such regression methods to

estimate power-law exponents – see [10] for a slightly different

way of thinking about such issues.

By attempting to reproduce the original results we realised the

regression intercept parameter, k, was used in such calculations –

we have not seen it explicitly used in other power-law related

studies (see [10] for the implicit consequences). The simple

solution to this and the other regression-based issues is to use the

unique maximum likelihood estimate of the power-law probability

density function [14–16,20], as done here.

Issues one and two also apply to the binning methods (b-d) of

[27] – likelihoods were incorrectly calculated and tested models

are not normalised probability distributions. These issues are in

addition to the inaccuracies known to occur when using such

regression approaches to estimate power-law exponents [13–

16,20]; also, goodness-of-fit was not properly assessed

[14,16,40,41]. Thus, distributions were tested erroneously

throughout [27], and the original result of close resemblance to

‘‘an inverse-square power law … that is typical of ideal Lévy

walks’’ [27] was based on incorrect methods.

Mussel Movements in Ref. [28]
To conclude that Lévy walks evolve through interaction

between movement and environmental complexity [28] first

requires demonstrating that the animals in question are using a

Lévy walk to move. In [28], step lengths of mussels were

‘‘estimated by the distance between two subsequent reorientation

events’’. Movements were analysed as follows: ‘‘the fit to the step

length data of solitary mussels was calculated using Maximum

Likelihood estimation by fitting the inverse cumulative frequency

distribution to that of the experimental data.’’ (line 92 of the

Supporting Online Material of [28]). (Such an ‘inverse cumulative

frequency distribution’ is also known as the survival function, and

is essentially what we show in Figure 1 but with the y-axis scaled

by sample size so that it goes up to 1).

The unnecessary specification of a plotting method when using

likelihood suggests that some of the aforementioned problems may

again be applicable. Ref. [28] continues ‘‘By comparing the

inverse cumulative distributions to that of the data, Goodness-of-fit

(G) and the Akaike Information Criterion (AIC) were calculated as

well as the variance explained by the fitted model (R2).’’ This

further suggests that likelihood (and therefore AIC) was incorrectly

calculated, and that R2 calculations continue to be inappropriately

used in Lévy studies (see [16]), prompting us to investigate the

details of the methods used.

Examination of the detailed Supporting Online Material of

[28], email clarifications with the lead author, and examination of

the R code used for the analyses (M. de Jager, pers. comm.),

determined the methods used to estimate parameters, calculate

likelihoods and compare the fits of models. These are documented

below in Methods, together with identification of several problems,

the most relevant of which we now summarise.

For the bounded power-law (PLB) model (3), only discrete

values of the exponent m were tested. This limits the accuracy of

the method, and does not allow for calculation of confidence

intervals to characterise uncertainty. Also, multiple values of the

upper bound b were tested to maximise the likelihood. However,

this is not needed, because simply setting b to be the maximum

value in the data set will maximise the likelihood.

Issue one occurs – AIC calculations were again based on linear

fits of models. This is because AIC was calculated in R using the

command

AIC lm cuml*cum TLWð Þð Þ

where cuml is the observed distribution and cum_TLW is the

fitted distribution. The AIC(..) command calculates likelihood

from the linear regression lm(..), rather than from the

underlying probability distribution being tested.

A Rayleigh distribution was also analysed in the R code from

[28], and ‘‘used for Brownian motion’’, although this is not

mentioned in [28], which specifically says in the opening

paragraph that step lengths ‘‘are derived from an exponential

distribution in the case of Brownian motion’’. This latter quote

relates to a misunderstanding that we return to in the Discussion.
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Re-analysis of mussel data. In a recent Erratum [30],

published on 23rd December 2011, the authors have somewhat

addressed the above concerns. These concerns, and several others

(most notably that the data set was problematic), were brought to

their attention by V. Jansen and F. Van Langevelde (indepen-

dently of us). The authors acknowledged that Issue one occurred,

and presented a replacement of their original Fig. 1B with model

fits calculated using the likelihood methods of [14]. We have

independently reproduced this figure and the model fits (using the

corrected data set), and confirmed agreement (M. de Jager, pers.

comm.) of our estimates for the power-law exponents m for the

Lévy walk and truncated Lévy walk models (PL and PLB models

in our terminology). Full R code for this section is given in the

Supporting Information (code S3 and code S4).

We agree that the truncated Lévy walk model is indeed more

supported by the data than an exponential model (overwhelmingly

so, given our calculated respective Akaike weights of 1 and 0).

However, as emphasised by [40], we also performed goodness-of-

fit tests [42] in [14], to test if the data are consistent with coming

from the favoured model. While one model may indeed be

favoured over another, it still might not be a suitable model – see

also [8,41].

We therefore conduct goodness-of-fit tests on the corrected

mussel data set. Our results decisively reject (P~0) the hypothesis

that the data are consistent with coming from the truncated Lévy

walk (PLB) model shown in the Erratum [30] (see Methods for

details). Thus, we do not agree with the Erratum’s finding that the

‘‘overall conclusion of the [original] paper that mussels adopt a

Lévy walk … remains unchanged’’.

In February 2012, a Technical Comment [31] on [28] was

published, with a Response by the original authors [32]. Ref. [31]

noted that theory, knowledge that mussels can switch between

moving very little (or not at all) and moving much farther, and

visual inspection of the data, suggested testing of a composite

Brownian walk (whereby mussels switch between different modes,

in each of which they display Brownian motion). To test this, [31]

used sums of two, three or four weighted exponential distributions,

and used AIC to compare support for these models with the

original three models used in [28] (Exp, PL and PLB). The

resulting Akaike weights most supported the three-exponential

model of composite Brownian motion. They found that the

truncated power-law (PLB) model is supported over the exponen-

tial only if the composite Brownian models were not included.

In their Response [32] to [31], the original authors re-analysed

their (corrected) data by fitting models to movements of the eight

individual mussels that had a sample size w50 (rather than

grouping all data together into one data set, as done originally).

Five models were tested, the original three plus composite

Brownian walks consisting of sums of two or three weighted

exponentials (following [31]). Referring to their Table 1 and

Figure 2, they stated that ‘‘A truncated Lévy walk provided large

improvement over a Brownian walk,’’ – their Table 1 shows that

for six of the eight mussels the AIC for the truncated Lévy walk is

lower than that for the Brownian walk. The authors continue

‘‘whereas a composite Brownian walk provided only small further

improvement in fit,’’.

However, their Table 1 does not support this statement – the

composite Brownian walk models give much better fits than the

truncated Lévy walk model. (The one exception is mussel B, for

which the simple Brownian walk gives the best fit anyway). The

Akaike weights for the truncated Lévy walk model are 0.000 for

five mussels, and 0.002, 0.003 and 0.054 for the remaining three.

The Akaike weight of 0.054 corresponds to mussel F – the

evidence is thus ‘‘reasonably strong’’ [37] against the truncated

Lévy walk being the most suitable model. Yet for the remaining

seven mussels the Akaike weights for the truncated Lévy walk

model are so small that we conclude that the simple or composite

Brownian walks are overwhelmingly supported compared to the

truncated Lévy walk model, in contrast to providing the reported

‘‘only small further improvement’’ [32].

Marine Predator Movements in Ref. [33]
In [33], strong support was found for ‘‘Lévy search patterns

across 14 species of open-ocean predatory fish (sharks, tuna,

billfish and ocean sunfish), with some individuals switching

between Lévy and Brownian movement as they traversed different

habitat types.’’. Vertical dive data were again analysed to reach

conclusions of one-dimensional Lévy or Brownian walks, after first

dividing long time series of vertical movements into shorter

sections using a split moving-window analysis. A total of 129

sections were analysed, of which 35 were determined visually to be

poorly fitted by the candidate distributions, leaving 94 sections to

be analysed statistically. Also, georeferenced locations that

indicated animals’ locations were overlaid on, for example,

satellite maps of chlorophyll a concentrations, which we agree is

a valuable endeavour. The only data that had been originally

analysed in [27] were for basking sharks. Note that new bigeye

tuna data were analysed in [33], and it was concluded that for 19

out of the 32 sections, a truncated power-law provided the best fit.

Ref. [33] did not use the aforementioned methods of [27]. Their

methods were based on those developed and tested more recently

in [43]. Ref. [43] developed a method to estimate, for the PL

model (1), the most suitable value of a to be considered as the start

of the tail. However, [33] used this approach to also estimate b

(their xmax) for the PLB model (3), the maximum value of the data

to be fitted to by the model. This was often less than the maximum

value of the data set. To see this, compare the ‘Max step length

(m)’ column with the ‘Best fit Xmax’ column in Table S3 of [33].

The first example is for bigeye tuna 1 (section 2), for which the

maximum step length in the data was 1,531 m but the best fit xmax

was only 466 m. Thus, for this example (which happens to be the

most extreme), step lengths w466m were not part of the final

model fits, even though values up to 1,531 m were recorded. Of

the 94 data sets (sections) analysed statistically, 66 were best fitted

by the PLB model (compared to other models). Of these 66, 28

(42%) have ‘Best fit Xmax’ less than the ‘Max step length’ of the

data. The 28 cases have a mean ratio of ‘Best fit Xmax’ to ‘Max

step length’ of 0.75, with five-number summary (minimum,

quartiles and maximum) of 0.30, 0.59, 0.80, 0.91, 0.99 (Support-

ing Information Code S5).

So [33] tested bounded power-law distributions, which we have

also done (e.g. here and in [14]). However, when doing so we fixed

the upper bound b to be the maximum data value (or higher [14]),

because the Lévy flight hypothesis is concerned with the rare

longer steps in the heavy tail of the data. As [33] say when

introducing their work, ‘‘Lévy flights describe a movement pattern

characterized by many small steps connected by longer reloca-

tions’’, with the probability density function of steps having ‘‘a

power-law tail in the long-distance regime’’. However, the lower

and upper bounds were fitted to ‘‘find the distribution that best fit

most of the data’’ (page 13 of Supplementary Information of [33]),

rather than biological reasons such as, for example, if the largest

movements are known to be diving associated with thermoregu-

lation. In our opinion, to fit a model that results in often ignoring

the longer steps in the tail of the data seems somewhat at odds with

the very Lévy flight hypothesis being tested. Furthermore, it is

known that some probability distributions (such as the lognormal)
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can, when looking at restricted ranges, be mistaken for power laws

[44].

Related to this, [45] gave a rule of thumb that ‘‘a candidate

power law should exhibit an approximately linear relationship on

a log-log plot over at least two orders of magnitude of data in both

the x and y axes’’. Indeed, the original Lévy flight hypothesis [7] of

a pure power-law distribution was deduced to hold over almost

two orders of magnitude, based on such a linear relationship. But

of the 66 aforementioned sections that were best fitted by the PLB

model in [33], only 7 occurred over two orders of magnitude (i.e.

in Supplementary Table S3, for only 7 cases is the ‘Best fit Xmax’

§100|‘Best fit Xmin’ when the PLB model is the best fitting

distribution). So of 129 data sections originally analysed, only 7

found a bounded power-law over at least two orders of magnitude

to be the best fitting distribution. Thus, a bounded power-law

distribution may indeed be the most suitable model for a data

section, but if this range is less than two orders of magnitude (as is

usually the case in [33]), we question how strongly this represents

evidence for the Lévy flight hypothesis, part of whose appeal

involves movement patterns being invariant across multiple scales.

A Terrestrial Example
The issues we have highlighted are not solely confined to work

whose conclusions support the Lévy idea, or to marine ecology.

Recently, [34] analysed movements of Australian desert ants,

concluding that the data did not show characteristics of a Lévy

walk strategy. The methods of [14] were used to compare the PL

and Exp models across the tails of the data, concluding that the

Exp model was preferred (Table 2 of [34]). However, the data

were considered to be rather poorly described by the Exp model,

but much better described by fitting two separate functions to the

short and long ranges of the distribution (Table 1 of [34]). The

resulting fits were compared using AIC ‘‘based on the residual

error’’ of regression fits [34]. This is again related to Issue one

described above. The solution here would be to explicitly write

down the probability density function being tested and then work

out the likelihood function (as since done in [31]).

Discussion

We have identified three methodological issues that each

occurred in one or more recent studies. The studies made similar

conclusions regarding animal movements. Likelihood was calcu-

lated incorrectly in [27,28], leading to incorrect AIC calculations,

and thus to invalid conclusions regarding model selection, and

consequently to misleading biological conclusions. In particular,

we have shown that one issue, of likelihoods being computed from

linear fits of models rather than from the underlying probability

distributions being tested, has occurred in slightly different ways in

three papers [27,28,34]. This method is not merely inaccurate, it is

fundamentally incorrect.

When applying proper likelihood methods to an example data

set from [27], the original results for the data set are overturned.

This demonstrates that the methodological issues are important,

questioning the original central conclusion of ‘‘scaling laws of

marine predator search behaviour’’ that was based on the

incorrect methods. Since we have not re-analysed all the data

sets from [27], we do not claim to have overturned all the original

conclusions (concerning all the data), rather we question them

because they were based on methods shown to be incorrect. A full

re-analysis using correct methods may indeed reach the original

conclusion for some of the data sets of close resemblance to an

inverse-square power law over the full ranges of data. Likelihood

problems were demonstrated with the methods of [28], and re-

analysis of the data rejects the study’s central conclusion that

mussels use a Lévy walk movement strategy.

Although we found the power-law distribution to have no

support compared to the exponential for the bigeye tuna data set

of [27], we do not claim that the exponential is a suitable model (as

seen in Figure 1 and the associated goodness-of-fit results). Rather,

more complex behavioural models [3,46] are likely required to

understand these data (as was indeed acknowledged in [27]).

Whether such models could be described as ‘‘Lévy-like’’ [27]

would be hard to evaluate, because this term was never defined.

This restricts quantitative inference of how ‘‘non-Lévy-like’’ a

pattern has to be to not be considered ‘‘Lévy-like’’ (see also [29]).

Also note that the results have since been interpreted as standard

Lévy flights [47] rather than the somewhat weaker ‘‘Lévy-like’’.

With regard to the exponential distribution, there seems to be a

misunderstanding concerning Brownian motion. We previously

[8,14,16] tested the power-law distribution against the exponential

distribution because the exponential represents the simplest

alternative hypothesis of steps arising from an uncorrelated

Poisson random process. The exponential distribution was one

of the alternative distributions considered in [48] because ‘‘It can

be shown that if the probability per unit length to terminate the

walk remains constant’’, i.e. a Poisson process [38], then ‘‘the

distribution of lengths of many walks has an exponential form.’’.

As [22] stated: ‘‘Exponential laws, through the Central Limit

Theorem, give rise to asymptotically Gaussian statistics (Brownian

motion)’’. And [49], referring to simulating a random walk using

the PL model (1), stated ‘‘If mw3 the movement process is a

Brownian random walk.’’.

The above examples are correct and consistent with each other.

The Exp model (2) represents a simple hypothesis. It gives rise to

Brownian motion, as does the PL model (1) with mw3 (because the

distributions have finite variance). However, since any distribution

with finite variance would also give rise to Brownian motion in the

long-term limit [50], to rule out Brownian motion it is not

sufficient to just rule out the Exp model – the Exp model is just the

simplest model. However, see below for other modelling

approaches.

We explained a concern regarding the estimation of lower and

upper bounds of the tested distributions. This raises a fundamental

issue that the whole idea of Lévy flights is only concerned with the

tail of the data. A data set may indeed need some pre-processing

before being analysed (say, to exclude measurements that are not

representative of the biological process being studied). But any

model should really be fit to the complete resulting data set. To

test for a power-law tail it would be better to fit, to the resulting

data set, a distribution that spans all the data and has a power-law

tail, rather than to use a method that decides where the tail starts

for each model and ignores smaller data values.

As noted in the Introduction, correctly testing whether the

movement data are consistent with coming from a distribution

with a heavy power-law tail is only the first step in identifying Lévy

movement patterns. If this first step results in a positive result of a

heavy power-law tail, it is not appropriate to then directly

conclude that the animals are actually using such a movement

strategy to search for food, as discussed in a recent review [10]. For

example, the observed data may not directly correspond to actual

complete straight-line animal movements between changes of

direction, as usually assumed in Lévy analyses, and such sampling

issues can affect results [40,41,51]. Also, Lévy and Brownian

motion models are simple descriptions of animal movements,

whereas the actual strategies used by animals will involve memory,

intelligence and intermittent strategies [10]. And animals move for
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reasons other than foraging for food, yet simple descriptive

statistical analyses ignore any role of behaviour.

One solution to the aforementioned problems is in the

framework of mechanistic state-space models [3,52]. This requires

coupling of an explicit observation model with a biological

movement model, separating the procedure of observing the

animal (that yields the data) from the movements that the animal is

actually making. Movement can then be partitioned into different

behavioural states, such as ‘searching’ and ‘migrating’. The time

series in [33] were long enough to enable separation into shorter

sections, which represents a positive advancement to the usual

approach of describing all observed movements by a single power-

law (or other) distribution. However, the state-space approach

does not require pre-processing of the data, since the partitioning

into different states is part of the overall fitting process.

For example, the use of state-space models to analyse location

data from satellite transmitters fitted to grey seals revealed that the

seals focussed foraging efforts on a smaller fraction of the

continental shelf area than was previously thought [53]. Another

recent use [54] revealed migration pathways and multispecies

hotspots of marine predators. And biological questions such as

how well do animals navigate can be addressed in a quantitative

fashion [55]. A Lévy movement model could be tested in the state-

space framework as a searching model, and it could be compared

with other candidate searching models using a model selection

approach. Other recommended modelling approaches include

hidden Markov models [56] (a particular class of state-space

model) and mechanistic home range models [57,58], which are

biologically intuitive because they emphasize the underlying

mechanisms responsible for the observed movement patterns.

Given our findings, we caution against the idea [27] that ‘‘Lévy-

like walks may be useful for developing more realistic models of

how animals redistribute themselves in response to shifting

resources as a consequence of climate change, fisheries extractions

and other habitat modifications.’’. We therefore also discourage

the logical extension of such work, which would be to use such

models to provide advice to managers of marine ecosystems.

Methods

Here we briefly discuss Bayesian weights, give the derivations

for equations (7) and (8), and document the methods (and

associated problems) used to calculate Akaike weights in [28].

Bayesian Weight Calculations
For method e in Table 1, Bayesian, rather than Akaike, weights

were calculated in [27]. Bayesian weights are calculated similarly

to Akaike weights (e.g. page 290 of [37]), but use the Bayesian

Information Criterion (BIC) in place of AIC. The BIC is

calculated from the log-likelihood of a model as

BIC~{2 log (likelihood)zK log n, ð10Þ

where n is the sample size and K is the number of parameters being

estimated [37]. Whereas AIC is calculated as

AIC~{2 log (likelihood)z2K : ð11Þ

Using the log-likelihood values given in Table 1 for the PL and

Exp models, we calculate respective BIC values of 236,272 and

232,615, giving Bayesian weights of 0 and 1, the same as the

Akaike weights in Table 1. Thus, Bayesian and Akaike weights

give the same results, and so we used Akaike weights (as were

mostly used in [27]).

Also, for the small sample AICc used in [27], the 2K term in

(11) is multiplied by n=(n{K{1). This is essentially 1 for the

bigeye tuna data (given n~29,900 and K~2 for the two models),

and AIC and AICc give identical Akaike weights.

Derivation of Equation (7) for the Exponential Model
As outlined in the main text, movement steps, x, were put in

descending order such that their respective ranks were given by

y~1,2,3,:::,n; y(x) thus represents the number of steps §x. The

exponential model was tested in [27] by fitting a straight line to

log10 y against x. Thus,

log10 y~axzb, ð12Þ

y~10axzb, ð13Þ

where a and b are the fitted coefficients. Since y represents the

number of steps §x, we have

P (step§ x) ~ y=n ð14Þ

~
10axzb

n
: ð15Þ

To derive (7), first note that f (x) is a probability density function

for step sizes. Thus it equals, by definition [38], the gradient of

P(stepƒx), the cumulative distribution function for a step size,

which equals the gradient of P(stepvx) for continuous distribu-

tions. Thus, we have

f (x)~
d

dx
P(stepvx) ð16Þ

~
d

dx
½1{P(step§x)� ð17Þ

~
d

dx
1{

10axzb

n

� �
ð18Þ

~
d

dx
1{

10b10ax

n

� �
ð19Þ

~{
10b

n
a ln 10:10ax, ð20Þ

where the last step comes from using the relationship

d

dx
10ax~a ln 10:10ax: ð21Þ

Now define l~{a ln 10~{a= log10 e, to give
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f (x)~
10b

n
l10{lx log10 e ð22Þ

~
10b

n
l10log10 e{lx ð23Þ

~
10b

n
le{lx ð24Þ

~
10be{la

n
le{l(x{a) ð25Þ

~Cle{l(x{a) ð26Þ

where C~10be{la=n, giving the required equation (7).

Derivation of Equation (8) for the Quadratic Model
We now derive the probability function f (x) given in (8) that

relates to the quadratic model. On page 4 of their Supplementary

Information, [27] introduced ‘‘a quadratic model

½log10 (y)* log10 (x)z log (x)2� describing intermediate behav-

iour’’. Presumably the final log should also be log10 and the term

should be ( log10 x)2.

So a quadratic model was fitted to the data plotted on the rank/

frequency plots with log10 axes. We explicitly write the model fit as

log10 y~c log10 xzh( log10 x)2zk, ð27Þ

where c, h and k are the fitted regression coefficients. The

coefficients are calculated by doing a multiple linear regression

[21]. Equation (27) can also be written as

y~10kxcxh log10 x: ð28Þ

Denoting the probability density function to be f (x), as for (17) we

have

f (x)~
d

dx
½1{P(step§x)� ð29Þ

~
d

dx
1{

y

n

h i
ð30Þ

~{
1

n

dy

dx
: ð31Þ

Using the fact that

d

dx
log10 x~

1

x ln 10
, ð32Þ

it is easier to differentiate (27) with respect to x, rather than to

differentiate (28). This gives

1

y ln 10

dy

dx
~

c

x ln 10
z

2h log10 x

x ln 10
, ð33Þ

dy

dx
~

y

x
cz2h log10 xð Þ ð34Þ

~10kxc{1xh log10 x cz2h log10 xð Þ: ð35Þ

Substituting into (31) results in

f (x)~{
10k

n
xc{1xh log10 x cz2h log10 xð Þ: ð36Þ

This is the formulation (8) given in the main text.

To see if this is indeed somehow intermediate between power-

law and exponential distributions, we now cast it in terms of a

power-law term multiplied by a (complicated) exponential term

and then multiplied by a log10 term. Substitute.

xh log10 x~eh( log10 x) ln x ð37Þ

to give

f (x)~{
10k

n
xc{1eh( log10 x) ln x cz2h log10 xð Þ, ð38Þ

which does not appear to be an intermediate distribution (or even

a valid distribution – Issue three).

The normalisation condition can be most simply checked by

using the fact that y(x~a)~nP(step§a)~n. Putting x~a into

(28) gives.

y(x~a)~10kacah log10 a: ð39Þ

This clearly is not simply n (which does not even appear in the

equation), showing that f (x) is not properly normalised. Again, this is

due to the fact that c, h and k are determined from a linear regression

(multiple linear regression in this case), with no consideration of a or n.

Outline of the Akaike Weight Calculations in Ref. [28]
Examination of the detailed Supporting Online Material of

[28], email clarifications with the lead author, and examination of

the R code used for the analyses (M. de Jager, pers. comm.),

determined that the methods used to estimate parameters and

calculate likelihoods to compare the fits of models were as follows:

1. Load in the data of step lengths and sort into ascending order.

2. First consider the bounded power-law (PLB) model, as given in (3).

(a) Fix the lower bound a~0:2, just below the minimum

value of the data of 0.21095 (for the data in Fig. 1B of [28]).

(b) Create a vector of values of the exponent m to test,

namely (1.1, 1.2, 1.3, …, 5.9, 6.0).

(c) Set a value of the upper bound b. Steps (c)-(g) will then be

repeated for different values of b.

(d) For each value of m in the above vector, calculate

L log½L(mDdata x)�=Lm, the partial derivative with respect to m of

the log-likelihood function log½L(mDdata x)�, given below in (42).
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(e) Find the value of m that minimises the absolute value (has

the value closest to 0) of L log½L(mDdata x)�=Lm. This is the

estimated value of m for the given value of b.

(f) Calculate the fitted inverse cumulative frequency distri-

bution (evaluated for each step in the data set) using the values of m
and b.

(g) Repeat (c)-(f) for incrementally increasing values of b.

(h) Each value of b thus has a corresponding m with an

absolute value of L log½L(mDdata x)�=Lm as calculated in (e). Select

the b that corresponds to the lowest overall absolute value of

L log½L(mDdata x)�=Lm. This b, and its corresponding m, are then

considered to be the best fitting values for the PLB model.

3. Calculate the maximum likelihood estimate for m for the

unbounded power-law distribution (PL model, equation (1)) from

the analytical solution (e.g. [14]). Calculate the corresponding

fitted inverse cumulative frequency distribution.

4. Calculate the maximum likelihood estimate for l for the

exponential distribution (Exp model, equation (2)). Calculate the

corresponding fitted inverse cumulative frequency distribution.

5. Calculate an AIC value for each model. The AIC for the PLB

model, for example, was calculated in R using the command

AIC lm cuml *cum TLWð Þð Þ

where cuml is the observed distribution and cum_TLW is the

fitted distribution in 2(f) calculated for the b corresponding to the

best fit in 2(h). The observed distribution cuml just takes the

values (n, n{1, n{2, ::: , 2, 1)=n for sample size n.

6. Calculate Akaike weights to compare models. This was done

using the following R code, where AICs is a vector containing the

AIC values for the three models and wAICs gives the resulting

Akaike weights:

dif~max AICsð Þ{min AICsð Þ

wAICs~ AICs{difð Þ=sum AICs{difð Þ
7. Comparisons were also made using G-statistics and the sum of

squared differences between the fitted distributions and the

observed distribution.

Problems with the Above Akaike Weight Calculations
We now highlight some problems with the above methods,

referencing by step number.

2(b). Only testing discrete values of m will limit the accuracy of the

method, and does not allow for calculation of confidence intervals

to yield the associated uncertainty of any estimate.

2(e). Rather than find the closest value of L log½L(mDdata x)�=Lm to

0, this gradient term should be set to 0 and solved numerically, to

give an exact maximum likelihood estimate for m. This avoids the

need to specify discrete values in step 2(b).

2(h). Selecting the b corresponding to the lowest absolute value of

L log½L(mDdata x)�=Lm is just selecting the b for which the

derivative of the log-likelihood function happens to get closest to

0 (because it is only calculated at discrete values of m). This is not

the same as determining which value of b gives the maximum

overall likelihood. In fact, it can be shown analytically (below) that

setting b to be the maximum value in the data set will maximise the

likelihood. So there is actually no need to test multiple values of b

to maximise the likelihood.

4. The equation in the code incorrectly assumed the exponential

distribution to reach 0, but if the power-law distributions are

assumed to start at a then the exponential distribution should also

start at a, and the equations given in [14] should be used. See [8]

for other published examples of this exact issue.

5. The AIC calculation is based on linear fits of models – this is

Issue one discussed above with respect to [27]. The details are

slightly different, but the main message is the same.

6. Even if the above issues did not hold, the code for the Akaike

weights is incorrect (e.g. see equation (8) in [14]). Correct code to

calculate the vector of Akaike weights wAICs from the vector of

AIC values AICs is:

Delta = AICs 2 min(AICs)

temp = exp(20.5 * Delta )

wAICs = temp/sum(temp)

7. The use of the additional methods involving G-statistics and

sums of squares is not justified. In Issue one, equation (6) shows

that minimising the sum of squares should give the same result as

maximising the erroneous likelihood, so there is no need for such

an extra method.

Some of the above problems (and others) were independently

raised in [31], and addressed in [30].

Derivation of Maximum Likelihood Estimate of b for the
PLB Model

Regarding the above Step 2(h) of the methods of [28] when

fitting the PLB model (3), we now show that the likelihood function

is maximised when setting the bound b equal to the maximum

value in the data set.

Given a data set x~ x1,x2,x3,:::,xnf g, and requiring b to be

estimated, for m=1 the log-likelihood function is (equation (A.23)

of [8]):

log½L(m,bDdata x)�~n log (m{1){n log (a1{m{b1{m)

{m
Xn

j~1

log xj

ð40Þ

~n log
m{1

a1{m{b1{m

� �
{m

Xn

j~1

log xj , ð41Þ

where L(m,bDdata x) is the likelihood of the unknown parameters

m and b given the known data x (assuming a is fixed). Equations

(40) and (41) are equivalent, though the form (40) cannot be

evaluated for mv1. The partial derivative with respect to b is

L
Lb

log½L(m,bDdata x)�~ n(1{m)

b
a

b

� �1{m

{1

� � : ð42Þ

For mw1, the numerator is negative and the denominator is

positive (since avb), so (42) is v0. For mv1, the numerator is

positive and the denominator is negative, so again (42) is v0.

For m~1, the log-likelihood function is (equation (A.25) of [8]):

log½L(bDdata x)�~{n log ( log b{ log a){
Xn

j~1

log xj , ð43Þ

for which
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L
Lb

log½L(bDdata x)�~ {n

b( log b{ log a)
v0: ð44Þ

Therefore the partial derivative is always negative, and so the log-

likelihood is maximised for the smallest possible value of b. By

definition this is the maximum value of the data set being fitted to.

Similar calculations show that if a is to be estimated, then the

maximum likelihood estimate of a is the minimum value of the

data set.

On page 39 of the Supplementary Information of [33] it was

stated that the likelihood function of the PLB model cannot be

calculated for mv1. This is not so – see (41) and [15]. Table S2 of

[33] gave an equation related to the maximum likelihood estimate

for m for the PLB model, taken from Table 1 of [15]. Ref. [15]

stated that the equation is valid for mv1, so it is unclear why [33]

could not compute it for mv1. Perhaps it was because the

equation in Table S2 of [33] is not the same as that in [15] (it has

been incorrectly re-arranged, and y is not defined).

Goodness-of-fit Tests for Mussels Data Set
To test whether the corrected mussels data set from [30] is

indeed consistent with coming from the PLB model, we conducted

goodness-of-fit tests using the G-test (likelihood-ratio test) with

Williams’s correction [42], as in [14]. Parameter a was fixed at 0.2

(as in [30]), b was estimated as the maximum step length in the

data set (119.1893 mm), the sample size n~6,996 and the MLE

for m for the PLB model is 1.87. The two binning procedures

described in Appendix A of [8] were used, here named Protocol

1: bin widths of 1 and then doubling the bin width once ,5 data

points were in a bin, and Protocol 2: doubling the bin widths

straight away (i.e. bins of 1, 2, 4, 8, …; and doubling again if there

were ,5 data points in a bin). Protocol 1 resulted in 23 degrees of

freedom (dof), goodness-of-fit value G~286, and P~0, thus the

data are not consistent with the PLB model (if Pw0:05 then we

would have concluded that the data are consistent with the model

at the 0.05 level [42]; this would have required that

Gvx2
0:05½23�~35:2, where x2

0:05½23� is the value to the right of

which is found 0.05 of the area under a x2 distribution with 23 dof

[42]). Protocol 2 resulted in the same conclusion (with 3 dof,

G~234 and P~0). Given that a bin width of 1 resulted in most of

the data points ending up in the first bin, we repeated the analyses

with initial bin widths of 0.1 and 0.01, to see if our results were

dependent on the bin widths (a bin width of 0.01 results in just

3.3% (234/6996) of the data in the first bin). The results were (i)

with the first bin width of 0.1 (Protocol 1: 96 dof, G~383 and

P~0; Protocol 2: 7 dof, G~253 and P~0), and (ii) with the first

bin width of 0.01 (Protocol 1: 205 dof, G~526 and P~0;

Protocol 2: 10 dof, G~253 and P~0). Thus the conclusion of

P~0 is robust to the binning procedure, and the data are

definitively not consistent with the PLB model.

Note that although AME was thanked for ‘‘comments and

suggestions’’ in [32] and had corresponded with two of the

authors, he had not seen an earlier version of [32] nor was aware

of its content or existence until it was published. Also note that our

re-analysis is performed on the data set of 6,996 values that

appears in the Erratum [30], corrected from the original in [30],

yet this is different to the corrected data set provided to the authors

of the Technical Comment (see Note 10 in [31]).

Supporting Information

Code S1 R code for standard calculations of likelihood
and Akaike weights for bigeye tuna data.
(R)

Code S2 R code for calculations regarding Issues one to
three, for bigeye tuna data.
(R)

Code S3 R code for goodness-of-fit calculations for both
data sets (called from Code S1 and Code S4).
(R)

Code S4 R code for standard calculations of likelihood
and Akaike weights for mussels data.
(R)

Code S5 R code to calculate summary statistics for
range calculations related to [33].
(R)

Code S6 Pseudo data file based on the original bigeye
data, obtained by sampling (with replacement) the
original step sizes to obtain a pseudo data set with
similar properties.
(TXT)

Code S7 Pseudo data file based on the original mussels
data, obtained by sampling (with replacement) the
original step sizes (w0:2mm) to obtain a pseudo data
set with similar properties.
(TXT)
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walks: Adjusting searching statistics to resource availability in microzooplankton.

PNAS 100: 12771–12775.

23. Bertrand S, Bertrand A, Guevara-Carrasco R, Gerlotto F (2007) Scale-invariant
movements of fishermen: the same foraging strategy as natural predators. Ecol

Appl 17: 331–337.
24. Marchal P, Poos JJ, Quirijns F (2007) Linkage between fishers’ foraging, market

and fish stocks density: Examples from some North Sea fisheries. Fish Res 83:
33–43.

25. Austin D, Bowen WD, McMillan JI (2004) Intraspecific variation in movement

patterns: modelling individual behaviour in a large marine predator. Oikos 105:
15–30.

26. Watkins N (2012) The physics of foraging: An introduction to random searches
and biological encounters. Physics Today 65: 44–46.

27. Sims DW, Southall EJ, Humphries NE, Hays GC, Bradshaw CJA, et al. (2008)

Scaling laws of marine predator search behaviour. Nature 451: 1098–1102.
28. de Jager M, Weissing FJ, Herman PMJ, Nolet BA, van de Koppel J (2011) Lévy
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non-Lévy movement paths: reply. Ecology 92: 1701–1702.

42. Sokal RR, Rohlf FJ (1995) Biometry: The Principles and Practice of Statistics in

Biological Research. New York: 3rd ed., W. H. Freeman and Company, 887 p.

43. Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in

empirical data. SIAM Rev 51: 661–703.

44. Sornette D (2004) Critical Phenomena in Natural Sciences. Chaos, Fractals,

Self-organization and Disorder: Concepts and Tools. Springer Series in

Synergetics. Heidelberg: Springer, 528 p.

45. Stumpf MPH, Porter MA (2012) Critical truths about power laws. Science 335:

665–666.

46. Jonsen ID, Mills Flemming J, Myers RA (2005) Robust state-space modeling of

animal movement data. Ecology 86: 2874–2880.

47. Reynolds AM, Rhodes CJ (2009) The Lévy flight paradigm: random search
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