
Low relative error in consumer-grade GPS units make themideal for 
measuring small-scale animal movement patterns

Breed, G. A., & Severns, P. M. (2015). Low relative error in consumer-grade GPS 
units make them ideal for measuring small-scale animal movement patterns. 
PeerJ, 3, e1205. doi:10.7717/peerj.1205

10.7717/peerj.1205

PeerJ

Version of Record

http://cdss.library.oregonstate.edu/sa-termsofuse

http://survey.az1.qualtrics.com/SE/?SID=SV_8Io4d9aAYR1VgGx
http://cdss.library.oregonstate.edu/sa-termsofuse


Submitted 3 June 2015
Accepted 31 July 2015
Published 20 August 2015

Corresponding author
Greg A. Breed, gabreed@alaska.edu

Academic editor
David Roberts

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj.1205

Copyright
2015 Breed and Severns

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Low relative error in consumer-grade
GPS units make them ideal for measuring
small-scale animal movement patterns
Greg A. Breed1,3 and Paul M. Severns1,2

1 Harvard Forest, Harvard University, Petersham, MA, United States of America
2 Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR,

United States of America
3 Current affiliation: Institute of Arctic Biology, University of Alaska, Fairbanks, AK,

United States of America

ABSTRACT
Consumer-grade GPS units are a staple of modern field ecology, but the relatively
large error radii reported by manufacturers (up to 10 m) ostensibly precludes their
utility in measuring fine-scale movement of small animals such as insects. Here
we demonstrate that for data collected at fine spatio-temporal scales, these devices
can produce exceptionally accurate data on step-length and movement patterns of
small animals. With an understanding of the properties of GPS error and how it
arises, it is possible, using a simple field protocol, to use consumer grade GPS units
to collect step-length data for the movement of small animals that introduces a
median error as small as 11 cm. These small error rates were measured in controlled
observations of real butterfly movement. Similar conclusions were reached using a
ground-truth test track prepared with a field tape and compass and subsequently
measured 20 times using the same methodology as the butterfly tracking. Median
error in the ground-truth track was slightly higher than the field data, mostly between
20 and 30 cm, but even for the smallest ground-truth step (70 cm), this is still a
signal-to-noise ratio of 3:1, and for steps of 3 m or more, the ratio is greater than 10:1.
Such small errors relative to the movements being measured make these inexpensive
units useful for measuring insect and other small animal movements on small to
intermediate scales with budgets orders of magnitude lower than survey-grade units
used in past studies. As an additional advantage, these units are simpler to operate,
and insect or other small animal trackways can be collected more quickly than either
survey-grade units or more traditional ruler/gird approaches.

Subjects Animal Behavior, Bioengineering, Ecology, Entomology, Computational Science
Keywords Tracking methods, Euphydrays, Butterfly movement, Animal tracking,
Insect movement, Movement ecology, Checkerspot butterflies

INTRODUCTION
Movement ecology is developing into an important sub-discipline of ecology. This new

field has developed for several reasons. First, animal tracking technology has become

relatively inexpensive, light, and reliable, and tracking devices are becoming available for a

broader range of species (Cagnacci et al., 2010; Block et al., 2011), with some technologies
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even permitting tracking of large insects (Osborne et al., 1999; Chapman, Drake & Reynolds,

2011). Second, while this technological revolution has been taking place, or perhaps

because of it, population and behavioral ecologists are becoming increasingly aware of the

importance of understanding movement. Movement processes are key in the maintenance

of metapopulation genetic diversity and population viability, intra- and interspecific

interactions, predator–prey relationships, connectivity of animal subpopulations, and

they often figure prominently in conservation plans (Hanski, 1999; Dover & Settele, 2009;

Knowlton & Graham, 2010; Morales et al., 2010; Costa, Breed & Robinson, 2012; Fagan et

al., 2013). Along with the development of tracking technologies and increased interest

in animal movement, advances in computing have allowed the development of powerful

statistical models that can fit the complex time-series of animal movements to robustly

address a wide range of ecological questions (e.g., Blackwell, 2003; Jonsen, Flemming &

Myers, 2005; Breed et al., 2012; McClintock et al., 2013).

Although much of the new tracking data measure movement on broad spatial and

temporal scales, movement measured at smaller scales is relevant to an animal’s overall

behavioral repertoire, kinematics, and physiology (Goldbogen et al., 2006; Weimerskirch et

al., 2006; Naito et al., 2010). In the early years of movement ecology, insects were preferred

study organisms for understanding movement at these small scales. Insects are small, often

abundant, and many have local movements that are easy for a human observer to follow

and observe. Moreover, a careful human observer is unlikely to alter the behavior of an

insect being followed, where similar strategies would be extremely disruptive if applied to

vertebrates (Kareiva & Shigesada, 1983; Galen & Plowright, 1985; Haddad, 1999; Schultz &

Crone, 2001; Morales, 2002). These convenient properties made insects common choices

for many classic early movement ecology studies (Kareiva & Shigesada, 1983; Odendaal,

Turchin & Stermitz, 1989; Turchin, 1998).

As contemporary movement ecology study systems, insects have fallen out of favor.

Electronic tracking tags are now small enough to be deployed on a wide range of small

mammals, birds, and fishes, and virtually all mammals larger than 10 kg. Once deployed,

these tracking tags can monitor movements for weeks, months, and sometimes years

virtually without effort. The relative ease and large quantity of data produced from

tagging technologies, as compared to the labor intensive methods used in the classic insect

movement studies, has vastly broadened the size spectrum of model taxa in movement

ecology. With the exception of a few robust species (Kissling, Pattemore & Hagen, 2014),

insects are not able to carry such tags and are unsuitable for such tagging protocols.

However, there remains interest in understanding how insects, and other animals too

small to affix tracking tags, move and use space. If an organism’s movements are very

small and constrained, they can be effectively captured with video cameras (Noldus,

Spink & Tegelenbosch, 2002). For animals that mix both small (centimeter-scale) and

large (meter-scale) movements together, common in many flying insects (Schultz &

Crone, 2001; Severns & Breed, 2014; Breed, Severns & Edwards, 2015), video methods

are usually unworkable because the animals will quickly move out of frame. There have

been some successful attempts to track insects by affixing tags to them, most notably
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harmonic radar (Osborne et al., 1999; Ovaskainen et al., 2008; Kissling, Pattemore & Hagen,

2014). Harmonic radar, however, is only viable for the very largest, strongest fliers such

as bees, dragonflies, and some butterflies. The radar systems also require line-of-sight

detection and a powerful and expensive radar unit, and for many insect species harmonic

radar antennae physically interfere with flight (Kissling, Pattemore & Hagen, 2014).

Thus, for the majority of insects, traditional manual tracking remains the most practical

approach in the field. These approaches require observers to follow individual insects,

and place markers, usually pin flags, behind animals as they move. Marked locations are

subsequently measured using a tape, laser range finder, pre-installed reference grid, or

similar on-the-ground measurement methods (Turchin, 1998). Such methods are often

extremely labor intensive, and accurate locations across the landscape are limited by the

boundaries of the reference grid.

In the past 20 years, hand-held GPS units, in parallel with the aforementioned tracking

technology, have greatly improved in quality and these devices are now a common piece

of field gear for nearly all field ecologists. The reported error on these units usually

ranges from 3 to 10 m. Researchers needing sub-meter accuracy, often required to study

insect movement, have instead opted to use survey-grade GPS base units with hand-held

receivers. These systems commonly cost $20,000–$40,000 USD, require dedicated training,

and often proprietary software to run. Moreover, these systems are cumbersome compared

to consumer grade GPS units and difficult to operate in the field. By comparison,

consumer-grade GPS units sell for a few hundred dollars and promise accuracy no better

than 3 m. Ostensibly, this low accuracy (absolute error, error with respect the surface of the

earth) should be too coarse for insect tracking studies, but these relatively inexpensive GPS

units have become considerably more accurate and precise over the last decade (Arnold

& Zandbergen, 2011). More importantly, the nature of the error reported by the devices

and manufacturers is often misunderstood by practicing ecologists, even those who use

the technology frequently or deploy units on animals to track them. For many movement

questions, however, the absolute error (which can be relatively large) is not important.

Instead, the relative error, the error relative to the movement process being measured and

that occurs over the time span in which consecutive points are collected, is the relevant

uncertaintly. Because of the nature of GPS error, relative error can be very small on short

time scales (seconds to a few minutes). Thus consumer grade GPS units can provide

extremely faithful data on animal movement, even when movements are very small.

Here, we demonstrate the high accuracy of consumer grade GPS units for the measure-

ment of insect movement by presenting and analyzing data from two grassland associated

checkerspot butterflies, Euphydryas phaeton and E. editha taylori. We additionally perform

a ground-truth experiment by setting up a simulated movement pathway of a scale similar

to butterfly movement, with step-lengths ranging from 70 cm to 12.1 m as measured by

a field tape. We discuss how to achieve the degree of GPS accuracy suitable for insect

movement studies, and the counter-intuitive data collection method which favors the use

of the inexpensive, consumer grade GPS over the considerably more expensive professional

survey-grade units.
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METHODS
As part of a larger study on butterfly movement and ecology, we used consumer-grade GPS

units to track two species of checkerspot butterfly in two geographically distinct regions:

Euphydryas phaeton (Baltimore checkerspot) and Euphydryas editha taylori (Taylor’s

checkerspot). We used consumer grade GPS units in this instance because survey grade

units were not available. Both species occupy open, graminoid-dominated habitats, one in

eastern (E. phaeton) and the other in western (E. e. taylori) North America. Populations of

these two butterflies have relatively recently, within the last 30–120 years, adopted Plantago

lanceolata (English plantain), an exotic species to North America, as the primary larval

host plant.

Butterfly tracking and GPS accuracy
We tracked female checkerspots at a total of four sites, two in Massachusetts for E. phaeton

(the Bullit Reservation, near Asheville, MA and Stevens-Coolidge Place, North Andover,

MA) and E. e. taylori was tracked on two privately owned sites near Corvallis, Oregon

(see Severns & Breed, 2014 for details). Butterflies were tracked through open grasslands

and wetlands of moderate scale (∼0.8 to 20 ha) that were bordered by closed-canopy

forest matrix.

Female checkerspots were selected opportunistically and tracking of selected individuals

began immediately. Butterflies were followed, usually keeping a distance of 1–2 m and GPS

locations were recorded every 15 s for 15 min for E. phaeton and every 20 s for 20 min for

E. e. taylori with a consumer-grade, Garmin eTrex Venture HC. We enabled the WAAS

setting (wide area augmentation system) on each unit, which enables greater accuracy

through real time corrections using multiple satellite and on-the-ground reference stations

(Arnold & Zandbergen, 2011).

We used two closely related methods for measuring movement tracks with GPS units.

First, we used the traditional method of recording a movement path by placing pin flags

marking each butterfly’s path at the prescribed interval. When butterflies remained at the

same position for more than one time step, the number of intervals it remained at that lo-

cation was recorded (Turchin, 1998). When the observation period ended we revisited each

pin flag marking the animal’s path and recorded a GPS waypoint at each flag in the order

the flags were placed. This required two trips around the trackway, one to place the flags

while the butterfly was moving and another to take a waypoint at each flag some time later.

Alternatively, waypoints were collected in real time, at each time step while the

individual butterfly was being tracked. When individuals were alighted this was done

by positioning the GPS unit above the individual at a distance that did not affect behavior,

usually about a meter. While in flight, positions were taken directly behind the individual,

along the flight path it had just made. Except for the lack of pin flags, the positions

themselves were collected the same way, by taking an individual waypoint (the tracklog

function was not used). Waypoints were not automatically collected, and instead were

prompted by a recorded beep that was programmed to sound every 15 or 20 s from an mp3

player. Because pin flags were not used the course does not need to be revisited twice, which
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is less labor intensive and caused less trampling damage to habitat as compared to the pin

flag approach. In practice, collecting waypoints while tracking butterflies did not cause any

more abnormal behavior than the more traditional pin flag method, though care must be

taken not to hold the GPS unit such that it casts a shadow on the tracked butterfly. The

interval between consecutive GPS locations is thus 15 s, slightly longer than using the pin

flag method. Most of the data presented here was collected using this second methodology.

In many cases we were able to follow individuals for the entire prescribed observation

interval of 15 or 20 min, but occasionally individuals could not be followed or were other-

wise lost, so some tracks were shorter in duration than others. Flights of both species may

be cut short by sudden bouts of inclement weather, abruptly causing butterflies to become

completely still. To account for these issues, we employed rules for aborting behavioral

observations if butterflies entered a protracted bout of resting during the observation

period. If we observed 5 min of continuous inactivity we terminated the tracking effort for

that individual and another was selected (either immediately if the weather permitted, or

when weather improved). Tracking occurred when the weather conditions were ideal for

buttery flight, in full or nearly full sun, and between 1000 h and 1700 h.

At every time step we recorded behavioral information, enabling the construction of

behavioral budgets (reported in Severns & Breed, 2014; Breed, Severns & Edwards, 2015).

However, the behavioral data also indicated whether the tracked individual moved or did

not move during a particular time step. For our analysis, this is key, because a GPS location

was collected at every time step regardless of whether the butterfly moved. This enabled

us to compare actual butterfly movements to “null” movements. “Null” movements are

apparent moves made according to the GPS data, but through our direct observations, we

know that no movement actually took place. Thus, the null moves are strictly attributable

to GPS error and represent a control. This allowed us to sort the steps represented by each

consecutive GPS location into those representing movement and those representing only

GPS error. We then compared the step-lengths in butterfly pathways where the individual

moved (true steps) to the step-lengths where there was no movement (null steps). We used

these errors to estimate the signal to noise ratio in the movement pathways and the patterns

associated with the error over time (direction and magnitude).

Ground truth track
To better understand and confirm the butterfly tracking results and null vs. true

comparisons, we set up a ground-truth track in the University of Alaska’s experimental

forest land. The track was simply a set of numbered pin flags marking the ends of

consecutive steps of known length, which we prepared using a field tape and compass to

measure step-length and bearing. The course was 11 points that formed a jagged loop with

mixtures of step-lengths, numerous turn-backs and sharp corners, but also more subtle

turn angles; all common features of a real butterfly pathways. Step-lengths were mixed

and ranged from 70 cm to 12.1 m. The course was measured 20 consecutive times, with

points collected at the vertices of the track using the same protocol as that used for butterfly

tracking, with a point collected every 15 s. The step-lengths and step-bearings measured
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Table 1 Summary of null and true step-lengths. Comparison of null steps (butterfly was directly
observed to not move) and real steps (butterfly was directly observed to move) as measured by consumer-
grade GPS units.

Statistic Null steps Real steps

Number (N) 2,830 1,228

Median (m) 0.111 2.12

Mean (m) 0.378 3.14

Number = 0 1,042 (36.8%) 21 (1.7%)

Number < 0.25 m 2,275 (80.3%) 144 (11.7%)

Number < 1.00 m 2,684 (94.8%) 358 (29.1%)

Number < 3.00 m 2,759 (97.5%) 739 (60.1%)

Number > 10.0 m 20 (0.7%) 75 (6.1%)

from the 20 ground truth tracks could then be compared with each other for consistency

and variation across the sample and also with the field tape measured step-lengths and

compass measured step-bearings.

This ground truth was done in a different year than the butterfly tracks (2015) and also

used a different GPS model (Garmin GPSmap 62s). However, it is clear from the data that

the different units have similar properties with respect to fidelity in reproducing movement

pathways and we believe the results are generally valid for Garmin units. We cannot extend

our inferences to other manufacturers, but Garmin manufactures more than 50% of the

consumer grade GPS units in North America and close to 20% in Europe so these units

should be widely available to practicing ecologists. Moreover, the simple ground truth we

present here can be easily accomplished with other GPS models and manufacturers.

RESULTS
Null vs. true steps in butterfly tracking data
We found that with respect to the scale of real butterfly step-lengths, GPS error was very

small, with the average null step-length being 0.378 m and a median null step-length of

0.11 m. 37% of null steps were 0.0 m, 80.3% of null steps were less than 0.25 m and 94.8%

of null steps were less than 1 m. Four example tracks are shown in Fig. 1, and results

summarized in Table 1 and Fig. 2. The relatively large mean of null step-lengths was due

to a handful of very large erroneous steps. Real steps (across both species) had mean and

median lengths of 3.14 m and 2.12 m, respectively. Comparing means, the signal to noise

ratio was 8.4, while the signal-to-noise ratio of the median, a better estimate of central

tendency, was 19.3.

Ground-truth trackway
Results from the ground-truth trackway are shown in Fig. 3. The absolute error around

each of the track’s vertices is clear, but the small relative error in the individual step-length

and bearings is also clear. Steps are all nearly parallel, except for the very shortest steps

which have a bit more variation in their bearing, but even in these cases the bearings are

all constrained to be in the same quadrant. Median errors differed for each step, but were
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Figure 1 Example butterfly tracks. Four example butterfly tracks, the starting points are set to 0 and the
scale is in meters. The red tracks show the true steps connected, while the black tracks connect the null
steps for comparison.

mostly between 20 and 30 cm, and mean errors ranged from 22 to 48 cm, which is slightly

larger than the median and mean null steps from the real tracking data, but still a very

favorable signal-to-noise ratio. Step-lengths were also slightly overestimated (Fig. 4).

Step-bearings were also well constrained. For short steps, the entire distribution of

steps was constrained within a 45◦ section of a circle, for longer steps measured bearings

fell within a 15◦ section of a circle (Fig. 5). For short steps, GPS measured bearings

appeared less biased and thus more accurate than those measured in the field by a compass.

The accurate step-lengths and bearings represent turning angle, a key aspect of animal

movement, extremely well. Although there is still observation error in these ground-truth

trackways, the movement pattern is clearly visible, even in each individual track, and if this

were real data, would be highly suitable for a wide range of analytical approaches to address

a number of animal movement questions.
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Figure 2 Histograms of null vs. real step-lengths. Histograms of null steps (A) and true steps (B).

DISCUSSION
To understand why error is so small relative to the movement being measured, even when

the moves themselves are small, compared to the larger error radii reported by GPS units,

it is important to understand that these errors are fundamentally different from those

reported by GPS units and the manufacturers. Error reported by GPS units is absolute

error, it is measured with respect to fixed positions on the surface of the earth. Here we

are interested in the error relative to animal movement step-lengths, which are recorded

by two GPS locations taken in quick succession (15 or 20 s, in this case). The reason errors

are so small has to do with the “slow-varying” nature of GPS error, whereby, on short time

scales, error residuals are highly autocorrelated. This means that the underlying movement

steps, even when very small, will faithfully represent movement because the starting and

ending GPS locations are displaced from the surface of the earth with approximately

the same direction and magnitude. If the error residuals of the starting and ending GPS

locations are the same, the underlying movement step will be correct. This effect is clear

in the ground-truth tracks plotted in Fig. 3. The slow-varying nature of GPS error and

high autocorrelation of residuals is well illustrated by Arnold & Zandbergen (2011), who

carefully examine the nature of error in consumer grade GPS units.

Our experiments with tracking accuracy using consumer grade, hand-held GPS units

have some important implications. First, the accuracy and precision of the step-lengths

was considerably better than manufacturer states in our purpose of measuring movement.

Similar conclusions were reached by the US Federal Aviation Administration and National

Transportation & Safety Board with respect to the waypoints themselves. In 2008, they

reported the real 95% confidence intervals using the WAAS (Wide Area Augmentation

System) augmented GPS units (now standard on most consumer grade GPS units) were

on the order of 0.5 to 1.0 m (FAA, 2008). The nominal error for WAAS augmented GPS

units is 7.6 m. However, this 7.6 m error radius is actually the mandated upper bound of
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Figure 3 Ground-truth trackways. Ground-truth track: the blue line represents a fixed array of pre-
measured points that were traced 20 times using the GPS tracking method described for butterflies, with
locations collected every 15 s. The track itself is of approximately the same scale a butterfly might move,
with step-lengths ranging from 70 cm to 12.1 m. Step-lengths were measured with a field tape while
bearings were measured with a compass. Note that although there is a great deal of error around the
points themselves, the consecutively collected points represent both step-length (Fig. 4) and step-bearing
(Fig. 5), and by extension turning angle, accurately. Thus if the ground-truth track were actually the path
of a flying insect, its movement pattern would be faithfully captured. Also note that, using a compass to
measure bearing in the field has relatively large error, so the GPS average locations at each of the track’s
vertices more accurately represent the ground-truth track than the field tape and compass readings, which
have been left out of this figure.

the WAAS system. It is likely that, given the reliance on GPS systems of navigation and

surveying, GPS manufacturers overstate error to protect themselves against liability.

In our data, error introduced to step-lengths by consecutively collected GPS points were

generally <0.25 m and the signal to noise ratio was between 9:1 and 20:1, depending

upon how it was calculated. Both checkerspot butterflies made moves that averaged

just over three meters, with many steps that were much shorter. Compared to the scale

of movement that the tracked butterflies made during flight, GPS noise had minimal

(though not negligible) impact on the movement pathway. Our ability to quantify butterfly

movements and to detect differences in movement patterns between and within the two

checkerspot species was high, and it was extremely easy to detect even subtle difference in

movement (reported elsewhere: Severns & Breed, 2014; Breed, Severns & Edwards, 2015).

There are some elements of our sampling protocol that were likely key in obtaining

highly precise results. First, observation intervals were short; 15 and 20 s. These intervals

are considerably shorter than the satellite drift error process that affects GPS accuracy,
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Figure 4 Ground truth track step-length histograms. Bins are 20 cm wide. Note that there is some error
around step-lengths as there would be in other tracking technologies, but that the median error (median
difference between GPS-measured step-length and tape-measured step-length) is small relative to the step
size, even for steps in of 0.7 to 1.5 m. In addition, the distributions of the various step sizes overlap very
little. For reference, step 1 is the displacement between points 0 and 1, step 2 between points 1 and 2, etc.
Step 11 is the displacement between points 10 and 0 (see Fig. 3 for reference).
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Figure 5 Ground-truth track step-bearing circular histograms. Bins are 60◦ wide. Although short steps
have a less favorable signal-to-noise ratio, their bearings are consistent from one track to the next, with
well constrained headings that are in line with those measured by a hand-held compass in the field. In
fact, for very short steps an accurate compass reading (“True Bearing”) in the field is difficult (∗ such as
step 8), and bearing calculated from the GPS tracks appear to be more accurate than the field measured
compass bearing.

with autocorrelation dissipating to zero after about 15–30 min—though we note that

changes in error autocorrelation can sometimes be abrupt when consecutive positions are

fixed using a different constellation of GPS satellites. Second, adult butterflies were only

active under warm, calm, clear, and atmospherically settled days, optimal conditions for

acquiring satellites and minimizing GPS error. Furthermore, the butterflies we tracked in

open meadows, so multipath error (reflected signals) was likely minimal. Both field sites

(Massachusetts, Oregon), as well as the ground-truth site (Alaska) were in North America,

where WAAS network coverage is 100%. These factors likely enabled the GPS units to

produce more accurate locations than could be expected beneath a forest canopy or in

canyons, for example.

From our results, we cannot conclusively determine the time interval at which the GPS

error residuals will no longer be correlated. But given the nature of ionospheric distortion,

observation protocols that use intervals up to 1 min and perhaps 2 will likely produce

results similar to our 15–20 s time intervals. Longer time steps would not be recommend

unless meter-scale accuracy is acceptable. Finally, as track locations are recorded in-person
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(as opposed to remotely through an electronic tag), we highly recommend that observers

take ancillary behavioral notes, indicating if a step occurred and approximately how long

that step was, in order to ground-truth the step-lengths collected. These notes were key

for us, as without records of butterfly behavior from standard behavioral observations, it

would not have been possible to assess how well the GPS units performed.

Although slow drift error will introduce only a small amount of error to individual

steps, it will shift entire tracks in one direction and/or slightly distort whole tracks, which

are collected over 15 or 20 min. However, almost all relevant behavioral information is

preserved with the consumer grade GPS units, and because the absolute error with respect

to the surface of the earth is still relatively small (a meter or so using the WAAS system),

habitat usage patterns will be well represented. True centimeter scale accuracy, such as that

produced by survey grade GPS units, would likely only be required if two conditions are

in place: (1) all features in the landscape to which an animal might respond are known at

centimeter-scale accuracy (such as individual flower blossoms or host plant locations) and

(2) animals actually respond to resources only at these scales and not the larger scales that

might be produced by habitat edges.

For insects and other animals moving on small to medium scales in the field which can

be followed by an observer without affecting behavior (e.g., Potts & Lewis, 2014; Potts et al.,

2014), consumer grade GPS units offer a remarkably inexpensive and easy way to collect

movement data with sub-meter accuracy and movement studies can be conducted with

little up-front cost. It is important to understand how GPS error operates on step-length

data, and the errors we report are with respect to the moving animal and are thus relative

error, and do not represent the absolute error in position with respect to the surface of the

earth, which may be much larger. Precision mapping of actual geographic locations and

the boundaries of landscape elements (sub-meter accuracy) may be more labor intensive

than recording movement tracks and care must be taken if precise geographic position

is required. If accurately measuring step-lengths, orientations, and movement behavior

of insects or other small animals though time is the study goal, as is often the case in

movement ecology, consumer grade GPS units are a viable alternative to much more

expensive, survey-grade, base units and rovers.

ACKNOWLEDGEMENTS
We thank Ed Easterling for access to butterfly populations in Oregon, the Trustees of

Reservations for population access in Massachusetts, and Vivian Kimball for assistance in

the field.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Funding was provided by an NSERC Banting postdoctoral fellowship to GAB and partial

support was provided by SERDP (Strategic Environmental Research and Development

Program). The funders had no role in study design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Breed and Severns (2015), PeerJ, DOI 10.7717/peerj.1205 12/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.1205


Grant Disclosures
The following grant information was disclosed by the authors:

NSERC.

SERDP.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Greg A. Breed conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables, reviewed drafts of the paper.

• Paul M. Severns conceived and designed the experiments, performed the experiments,

contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the

paper.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.1205#supplemental-information.

REFERENCES
Arnold LL, Zandbergen PA. 2011. Positional accuracy of the wide area augmentation system in

consumer-grade GPS units. Computers & Geosciences 37:883–892
DOI 10.1016/j.cageo.2010.12.011.

Blackwell P. 2003. Bayesian inference for Markov processes with diffusion and discrete
components. Biometrika 90:613–627 DOI 10.1093/biomet/90.3.613.

Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA, Bograd SJ, Hazen EL, Foley DG,
Breed GA, Harrison AL, Ganong JE, Swithenbank A, Castleton M, Dewar H, Mate BR,
Shillinger GL, Schaefer KM, Benson SR, Weise MJ, Henry RW, Costa DP. 2011. Tagging
of Pacific Pelagics: tracking apex marine predator movements in a dynamic ocean. Nature
475:86–90 DOI 10.1038/nature10082.

Breed GA, Costa DP, Jonsen ID, Robinson PW, Mills-Flemming J. 2012. State-space methods
for more completely capturing behavioral dynamics from animal tracks. Ecological Modelling
235:49–58 DOI 10.1016/j.ecolmodel.2012.03.021.

Breed GA, Severns PM, Edwards AM. 2015. Apparent power-law distributions in animal
movements can arise from intraspecific interactions. Proceedings of the Royal Society of London
Interface 12:Article 10140927 DOI 10.1098/rsif.2014.0927.

Cagnacci F, Boitani L, Powell RA, Boyce MS. 2010. Animal ecology meets GPS-based
radiotelemetry: a perfect storm of opportunities and challenges. Philosophical Transactions
of the Royal Society B: Biological Sciences 365:2157–2162 DOI 10.1098/rstb.2010.0107.

Chapman JW, Drake VA, Reynolds DR. 2011. Recent insights from radar studies of insect flight.
Annual Review of Entomology 56:337–356 DOI 10.1146/annurev-ento-120709-144820.

Costa DP, Breed GA, Robinson PW. 2012. New insights into pelagic migrations: implications
for ecology and conservation. Annual Review of Ecology, Evolution, and Systematics 43:73–96
DOI 10.1146/annurev-ecolsys-102710-145045.

Breed and Severns (2015), PeerJ, DOI 10.7717/peerj.1205 13/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.7717/peerj.1205#supplemental-information
http://dx.doi.org/10.1016/j.cageo.2010.12.011
http://dx.doi.org/10.1093/biomet/90.3.613
http://dx.doi.org/10.1038/nature10082
http://dx.doi.org/10.1016/j.ecolmodel.2012.03.021
http://dx.doi.org/10.1098/rsif.2014.0927
http://dx.doi.org/10.1098/rstb.2010.0107
http://dx.doi.org/10.1146/annurev-ento-120709-144820
http://dx.doi.org/10.1146/annurev-ecolsys-102710-145045
http://dx.doi.org/10.7717/peerj.1205


Dover J, Settele J. 2009. The influences of landscape structure on butterfly distribution and
movement: a review. Journal of Insect Conservation 13:3–27 DOI 10.1007/s10841-008-9135-8.

FAA (Federal Aviation Authority). 2008. Wide-area augmentation system performance analysis
report. Report No. 24 Federal Aviation Authority, William J. Hughes Technical Center,
NSTB/WAAS T&E Team.
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