89 research outputs found

    The social role of C-reactive protein point-of-care testing to guide antibiotic prescription in Northern Thailand

    Get PDF
    New and affordable point-of-care testing (POCT) solutions are hoped to guide antibiotic prescription and to help limit antimicrobial resistance (AMR)—especially in low- and middle-income countries where resource constraints often prevent extensive diagnostic testing. Anthropological and sociological research has illuminated the role and impact of rapid point-of-care malaria testing. This paper expands our knowledge about the social implications of non-malarial POCT, using the case study of a C-reactive-protein point-of-care testing (CRP POCT) clinical trial with febrile patients at primary-care-level health centres in Chiang Rai province, northern Thailand. We investigate the social role of CRP POCT through its interactions with (a) the healthcare workers who use it, (b) the patients whose routine care is affected by the test, and (c) the existing patient-health system linkages that might resonate or interfere with CRP POCT. We conduct a thematic analysis of data from 58 purposively sampled pre- and post-intervention patients and healthcare workers in August 2016 and May 2017. We find widespread positive attitudes towards the test among patients and healthcare workers. Patients’ views are influenced by an understanding of CRP POCT as a comprehensive blood test that provides specific diagnosis and that corresponds to notions of good care. Healthcare workers use the test to support their negotiations with patients but also to legitimise ethical decisions in an increasingly restrictive antibiotic policy environment. We hypothesise that CRP POCT could entail greater patient adherence to recommended antibiotic treatment, but it could also encourage riskier health behaviour and entail potentially adverse equity implications for patients across generations and socioeconomic strata. Our empirical findings inform the clinical literature on increasingly propagated point-of-care biomarker tests to guide antibiotic prescriptions, and we contribute to the anthropological and sociological literature through a novel conceptualisation of the patient-health system interface as an activity space into which biomarker testing is introduced

    Misidentification of Burkholderia pseudomallei as Acinetobacter species in northern Thailand.

    Get PDF
    Background: Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic throughout the tropics. Methods: A study of reported Acinetobacter spp. bacteraemia was performed at Chiang Rai provincial hospital from 2014 to 2015. Isolates were collected and tested for confirmation. Results: A total of 419 putative Acinetobacter spp. isolates from 412 patients were re-identified and 5/419 (1.2%) were identified as B. pseudomallei. Four of the five patients with melioidosis died. An estimated 88/419 (21%) isolates were correctly identified as Acinetobacter spp. Conclusions: Misidentification of Acinetobacter spp. as B. pseudomallei or other bacteria is not uncommon and programmes to address these shortfalls are urgently required

    Clinical characteristics and outcome of children hospitalized with scrub typhus in an area of endemicity

    Get PDF
    Scrub typhus, caused by Orientia tsutsugamushi, is a major cause of acute febrile illness in children in the rural tropics.; We recruited 60 febrile pediatric patients with a positive scrub typhus rapid diagnostic test result and 40 healthy controls from Chiang Rai Province in northern Thailand. Diagnosis was confirmed by the detection of (1) O. tsutsugamushi-specific DNA in blood or eschar samples with a polymerase chain reaction assay, (2) a fourfold rise in immunoglobulin M (IgM) titer to ≥1:3200 in paired plasma samples with an indirect immunofluorescence assay (IFA), or (3) a single IgM titer of ≥1:3200 in an acute plasma sample with an IFA. Demographic, clinical, and laboratory data were collected, and patients were followed up for 1 year.; Diagnosis was confirmed in 35 (58%) of 60 patients, and all controls tested negative for scrub typhus. Patients with confirmed scrub typhus had clinical symptoms, including fever (35 of 35 [100%]), eschar (21 of 35 [60%]), cough (21 of 35 [60%]), tachypnea (16 of 35 [46%]), lymphadenopathy (15 of 35 [43%]), and headache (14 of 35 [40%]). Only 4 (11%) of 35 patients received appropriate antibiotic treatment for scrub typhus before admission. The median fever-clearance time was 36 hours (interquartile range, 24-53 hours). Complications observed include hepatitis (9 of 35 [26%]), severe thrombocytopenia (7 of 35 [20%]), pneumonitis (5 of 35 [14%]), circulatory shock (4 of 35 [11%]), and acute respiratory distress syndrome (3 of 35 [9%]). Treatment failure, defined by failure to defervesce within 72 hours of antibiotic treatment initiation, was noted in 8 (23%) of 35 patients, and 1 (3%) of the 35 patients died. No evidence of relapse or reinfection was found.; Pediatric scrub typhus in northern Thailand is often severe and potentially fatal with delays in treatment a likely contributing factor. Additional studies to investigate the bacterial, pharmacologic, and immunologic factors related to treatment outcome along with measures to improve public awareness should be prioritized

    A new negative control gene for amino acid biosynthesis in Saccharomyces cerevisiae

    Full text link
    Enzyme levels in multiple amino acid biosynthetic pathways in yeast are coregulated. This control is effected largely at the transcriptional level by a number. of regulatory genes. We report the isolation and characterization of a new negative regulatory gene, GCD4 , for this general control system. GCD4 mutations are recessive and define a single Mendelian gene on chromosome 111. A gcd4 mutation results in resistance to different amino acid analogs and elevated, but fully inducible, mRNA levels of genes under general control. Epistasis analysis indicates that GCD4 acts more directly than the positive regulators GCN1, GCN2, GCN3 and GCN5 , but less directly than GCN4 , on the transcription of the amino acid biosynthetic genes. These data imply that GCD4 is a negative regulator of the positive effector, GCN4 . Although GCD4 occupies the same position relative to the GCN genes as other GCD genes, it produces a unique phenotype. These results illustrate the diversity of function of negative regulators in general control.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46958/1/294_2004_Article_BF00447382.pd

    Temporal stability of polymorphic Arctic charr parasite communities reflects sustained divergent trophic niches

    Get PDF
    Polymorphic Arctic charr Salvelinus alpinus populations frequently display distinct differences in habitat use, diet, and parasite communities. Changes to the relative species densities and composition of the wider fish community have the potential to alter the habitat niche of sympatric Arctic charr populations. This study evaluated the temporal stability of the parasite community, diet, and stable isotopes (δ13C, δ15N) of three sympatric Arctic charr morphs (piscivore, benthivore, and planktivore) from Loch Rannoch, Scotland, in relation to changes to the fish community. All Arctic charr morphs displayed distinct differences in parasite communities, diet, and stable isotope signatures over time, despite the establishment of four new trophically transmitted parasite taxa, and increased fish and zooplankton consumption by the piscivorous and planktivore morphs, respectively. Native parasite prevalence also increased in all Arctic charr morphs. Overall, Loch Rannoch polymorphic Arctic charr morph populations have maintained their distinct trophic niches and parasite communities through time despite changes in the fish community. This result indicates that re-stocking a native fish species has the potential to induce shifts in the parasite community and diet of Arctic charr morphs

    Effect of point-of-care C-reactive protein testing on antibiotic prescription in febrile patients attending primary care in Thailand and Myanmar : an open-label, randomised, controlled trial

    Get PDF
    Background In southeast Asia, antibiotic prescription in febrile patients attending primary care is common, and a probable contributor to the high burden of antimicrobial resistance. The objective of this trial was to explore whether C-reactive protein (CRP) testing at point of care could rationalise antibiotic prescription in primary care, comparing two proposed thresholds to classify CRP concentrations as low or high to guide antibiotic treatment. Methods We did a multicentre, open-label, randomised, controlled trial in participants aged at least 1 year with a documented fever or a chief complaint of fever (regardless of previous antibiotic intake and comorbidities other than malignancies) recruited from six public primary care units in Thailand and three primary care clinics and one outpatient department in Myanmar. Individuals were randomly assigned using a computer-based randomisation system at a ratio of 1:1:1 to either the control group or one of two CRP testing groups, which used thresholds of 20 mg/L (group A) or 40 mg/L CRP (group B) to guide antibiotic prescription. Health-care providers were masked to allocation between the two intervention groups but not to the control group. The primary outcome was the prescription of any antibiotic from day 0 to day 5 and the proportion of patients who were prescribed an antibiotic when CRP concentrations were above and below the 20 mg/L or 40 mg/L thresholds. The primary outcome was analysed in the intention-to-treat and per-protocol populations. The trial is registered with ClinicalTrials.gov, number NCT02758821, and is now completed. Findings Between June 8, 2016, and Aug 25, 2017, we recruited 2410 patients, of whom 803 patients were randomly assigned to CRP group A, 800 to CRP group B, and 807 to the control group. 598 patients in CRP group A, 593 in CRP group B, and 767 in the control group had follow-up data for both day 5 and day 14 and had been prescribed antibiotics (or not) in accordance with test results (per-protocol population). During the trial, 318 (39%) of 807 patients in the control group were prescribed an antibiotic by day 5, compared with 290 (36%) of 803 patients in CRP group A and 275 (34%) of 800 in CRP group B. The adjusted odds ratio (aOR) of 0·80 (95% CI 0·65–0·98) and risk difference of −5·0 percentage points (95% CI −9·7 to −0·3) between group B and the control group were significant, although lower than anticipated, whereas the reduction in prescribing in group A compared with the control group was not significant (aOR 0·86 [0·70–1·06]; risk difference −3·3 percentage points [–8·0 to 1·4]). Patients with high CRP concentrations in both intervention groups were more likely to be prescribed an antibiotic than in the control group (CRP ≥20 mg/L: group A vs control group, p<0·0001; CRP ≥40 mg/L: group B vs control group, p<0·0001), and those with low CRP concentrations were more likely to have an antibiotic withheld (CRP <20 mg/L: group A vs control group, p<0·0001; CRP <40 mg/L: group B vs control group, p<0·0001). 24 serious adverse events were recorded, consisting of 23 hospital admissions and one death, which occurred in CRP group A. Only one serious adverse event was thought to be possibly related to the study (a hospital admission in CRP group A). Interpretation In febrile patients attending primary care, testing for CRP at point of care with a threshold of 40 mg/L resulted in a modest but significant reduction in antibiotic prescribing, with patients with high CRP being more likely to be prescribed an antibiotic, and no evidence of a difference in clinical outcomes. This study extends the evidence base from lower-income settings supporting the use of CRP tests to rationalise antibiotic use in primary care patients with an acute febrile illness. A key limitation of this study is the individual rather than cluster randomised study design which might have resulted in contamination between the study groups, reducing the effect size of the intervention

    Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma

    Get PDF
    Studying cancer metabolism gives insight into tumorigenic survival mechanisms and susceptibilities. In melanoma, we identify HEXIM1, a transcription elongation regulator, as a melanoma tumor suppressor that responds to nucleotide stress. HEXIM1 expression is low in melanoma. Its overexpression in a zebrafish melanoma model suppresses cancer formation, while its inactivation accelerates tumor onset in vivo. Knockdown of HEXIM1 rescues zebrafish neural crest defects and human melanoma proliferation defects that arise from nucleotide depletion. Under nucleotide stress, HEXIM1 is induced to form an inhibitory complex with P-TEFb, the kinase that initiates transcription elongation, to inhibit elongation at tumorigenic genes. The resulting alteration in gene expression also causes anti-tumorigenic RNAs to bind to and be stabilized by HEXIM1. HEXIM1 plays an important role in inhibiting cancer cell-specific gene transcription while also facilitating anti-cancer gene expression. Our study reveals an important role for HEXIM1 in coupling nucleotide metabolism with transcriptional regulation in melanoma

    miR-337-3p and Its Targets STAT3 and RAP1A Modulate Taxane Sensitivity in Non-Small Cell Lung Cancers

    Get PDF
    NSCLC (non-small cell lung cancer) often exhibits resistance to paclitaxel treatment. Identifying the elements regulating paclitaxel response will advance efforts to overcome such resistance in NSCLC therapy. Using in vitro approaches, we demonstrated that over-expression of the microRNA miR-337-3p sensitizes NCI-H1155 cells to paclitaxel, and that miR-337-3p mimic has a general effect on paclitaxel response in NSCLC cell lines, which may provide a novel adjuvant strategy to paclitaxel in the treatment of lung cancer. By combining in vitro and in silico approaches, we identified STAT3 and RAP1A as direct targets that mediate the effect of miR-337-3p on paclitaxel sensitivity. Further investigation showed that miR-337-3p mimic also sensitizes cells to docetaxel, another member of the taxane family, and that STAT3 levels are significantly correlated with taxane resistance in lung cancer cell lines, suggesting that endogenous STAT3 expression is a determinant of intrinsic taxane resistance in lung cancer. The identification of a miR-337-3p as a modulator of cellular response to taxanes, and STAT3 and RAP1A as regulatory targets which mediate that response, defines a novel regulatory pathway modulating paclitaxel sensitivity in lung cancer cells, which may provide novel adjuvant strategies along with paclitaxel in the treatment of lung cancer and may also provide biomarkers for predicting paclitaxel response in NSCLC

    Development of an amplicon-based sequencing approach in response to the global emergence of mpox

    Get PDF
    The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.This publication was made possible by CTSA Grant Number UL1 TR001863 from the National Center for Advancing Translational Science (NCATS), a component of the National Institutes of Health (NIH) awarded to CBFV. INSA was partially funded by the HERA project (Grant/ 2021/PHF/23776) supported by the European Commission through the European Centre for Disease Control (to VB).info:eu-repo/semantics/publishedVersio

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore