116 research outputs found

    A Computational Model of Reactive Oxygen Species and Redox Balance in Cardiac Mitochondria

    Get PDF
    AbstractElevated levels of reactive oxygen species (ROS) play a critical role in cardiac myocyte signaling in both healthy and diseased cells. Mitochondria represent the predominant cellular source of ROS, specifically the activity of complexes I and III. The model presented here explores the modulation of electron transport chain ROS production for state 3 and state 4 respiration and the role of substrates and respiratory inhibitors. Model simulations show that ROS production from complex III increases exponentially with membrane potential (ΔΨm) when in state 4. Complex I ROS release in the model can occur in the presence of NADH and succinate (reverse electron flow), leading to a highly reduced ubiquinone pool, displaying the highest ROS production flux in state 4. In the presence of ample ROS scavenging, total ROS production is moderate in state 3 and increases substantially under state 4 conditions. The ROS production model was extended by combining it with a minimal model of ROS scavenging. When the mitochondrial redox status was oxidized by increasing the proton permeability of the inner mitochondrial membrane, simulations with the combined model show that ROS levels initially decline as production drops off with decreasing ΔΨm and then increase as scavenging capacity is exhausted. Hence, this mechanistic model of ROS production demonstrates how ROS levels are controlled by mitochondrial redox balance

    Detecting neuroimaging biomarkers for schizophrenia:a meta-analysis of multivariate pattern recognition studies

    Get PDF
    Multivariate pattern recognition approaches have recently facilitated the search for reliable neuroimaging-based biomarkers in psychiatric disorders such as schizophrenia. By taking into account the multivariate nature of brain functional and structural changes as well as their distributed localization across the whole brain, they overcome drawbacks of traditional univariate approaches. To evaluate the overall reliability of neuroimaging-based biomarkers, we conducted a comprehensive literature search to identify all studies that used multivariate pattern recognition to identify patterns of brain alterations that differentiate patients with schizophrenia from healthy controls. A bivariate random-effects meta-analytic model was implemented to investigate the sensitivity and specificity across studies as well as to assess the robustness to potentially confounding variables. In the total sample of n=38 studies (1602 patients and 1637 healthy controls), patients were differentiated from controls with a sensitivity of 80.3% (95% CI: 76.7–83.5%) and a specificity of 80.3% (95% CI: 76.9–83.3%). Analysis of neuroimaging modality indicated higher sensitivity (84.46%, 95% CI: 79.9–88.2%) and similar specificity (76.9%, 95% CI: 71.3–81.6%) of rsfMRI studies as compared with structural MRI studies (sensitivity: 76.4%, 95% CI: 71.9–80.4%, specificity of 79.0%, 95% CI: 74.6–82.8%). Moderator analysis identified significant effects of age (p=0.029), imaging modality (p=0.019), and disease stage (p=0.025) on sensitivity as well as of positive-to-negative symptom ratio (p=0.022) and antipsychotic medication (p=0.016) on specificity. Our results underline the utility of multivariate pattern recognition approaches for the identification of reliable neuroimaging-based biomarkers. Despite the clinical heterogeneity of the schizophrenia phenotype, brain functional and structural alterations differentiate schizophrenic patients from healthy controls with 80% sensitivity and specificity

    Extraintestinal Manifestations of Inflammatory Bowel Disease

    Get PDF
    Extraintestinal manifestations (EIM) in inflammatory bowel disease (IBD) are frequent and may occur before or after IBD diagnosis. EIM may impact the quality of life for patients with IBD significantly requiring specific treatment depending on the affected organ(s). They most frequently affect joints, skin, or eyes, but can also less frequently involve other organs such as liver, lungs, or pancreas. Certain EIM, such as peripheral arthritis, oral aphthous ulcers, episcleritis, or erythema nodosum, are frequently associated with active intestinal inflammation and usually improve by treatment of the intestinal activity. Other EIM, such as uveitis or ankylosing spondylitis, usually occur independent of intestinal inflammatory activity. For other not so rare EIM, such as pyoderma gangrenosum and primary sclerosing cholangitis, the association with the activity of the underlying IBD is unclear. Successful therapy of EIM is essential for improving quality of life of patients with IBD. Besides other options, tumor necrosis factor antibody therapy is an important therapy for EIM in patients with IBD

    An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.

    Get PDF
    The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca(2+) current tightly controls Ca(2+) release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca(2+) channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca(2+)-induced Ca(2+) release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca(2+) release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca(2+) uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca(2+) release, and whole-cell phenomena, such as modulation of AP duration by SR Ca(2+) release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca(2+) current is adjusted in accord with the balance between voltage- and Ca(2+)-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments
    corecore