52 research outputs found

    Chemoprevention of Colonic Polyps with Balsalazide: An Exploratory, Double-Blind, Placebo-Controlled Study

    Get PDF
    A number of agents, including aspirin, nonsteroidal antiinflammatory drugs, cyclooxygenase-2 inhibitors, folic acid, calcium, and vitamins, have been evaluated for their potential in chemoprevention of sporadic colorectal adenomas or cancer. Preclinical data suggest that 5-aminosalicylates also may have a chemopreventive effect. To investigate chemoprevention of colonic polyps with balsalazide, a 5-aminosalicylate prodrug. In this randomized, double-blind, placebo-controlled study, adults diagnosed with small polyps in the rectosigmoid colon were treated with either balsalazide 3 g/d or placebo for 6 months. Follow-up lower endoscopy was performed, and all polyps were measured and analyzed histologically. The primary endpoint was reduction in mean size of the largest polyp per subject. Among 241 participants screened, 86 were randomized to treatment, with 75 subjects evaluable. Balsalazide 3 g/d (n = 38) did not significantly reduce the mean size of the largest colonic polyp or the number of polyps compared with placebo (n = 37). Although not significant, post-hoc analysis revealed that total adenoma burden per subject, calculated as the sum of the volumes of all adenomas in mm3, increased by 55% in the balsalazide group compared with 95% in the placebo group. Although balsalazide did not have significant chemopreventive effects on established colonic polyps, these results can aid in designing future prospective studies

    Estimation of Activity Related Energy Expenditure and Resting Metabolic Rate in Freely Moving Mice from Indirect Calorimetry Data

    Get PDF
    Physical activity (PA) is a main determinant of total energy expenditure (TEE) and has been suggested to play a key role in body weight regulation. However, thus far it has been challenging to determine what part of the expended energy is due to activity in freely moving subjects. We developed a computational method to estimate activity related energy expenditure (AEE) and resting metabolic rate (RMR) in mice from activity and indirect calorimetry data. The method is based on penalised spline regression and takes the time dependency of the RMR into account. In addition, estimates of AEE and RMR are corrected for the regression dilution bias that results from inaccurate PA measurements. We evaluated the performance of our method based on 500 simulated metabolic chamber datasets and compared it to that of conventional methods. It was found that for a sample time of 10 minutes the penalised spline model estimated the time-dependent RMR with 1.7 times higher accuracy than the Kalman filter and with 2.7 times higher accuracy than linear regression. We assessed the applicability of our method on experimental data in a case study involving high fat diet fed male and female C57Bl/6J mice. We found that TEE in male mice was higher due to a difference in RMR while AEE levels were similar in both groups, even though female mice were more active. Interestingly, the higher activity did not result in a difference in AEE because female mice had a lower caloric cost of activity, which was likely due to their lower body weight. In conclusion, TEE decomposition by means of penalised spline regression provides robust estimates of the time-dependent AEE and RMR and can be applied to data generated with generic metabolic chamber and indirect calorimetry set-ups

    A Range of Earth Observation Techniques for Assessing Plant Diversity

    Get PDF
    AbstractVegetation diversity and health is multidimensional and only partially understood due to its complexity. So far there is no single monitoring approach that can sufficiently assess and predict vegetation health and resilience. To gain a better understanding of the different remote sensing (RS) approaches that are available, this chapter reviews the range of Earth observation (EO) platforms, sensors, and techniques for assessing vegetation diversity. Platforms include close-range EO platforms, spectral laboratories, plant phenomics facilities, ecotrons, wireless sensor networks (WSNs), towers, air- and spaceborne EO platforms, and unmanned aerial systems (UAS). Sensors include spectrometers, optical imaging systems, Light Detection and Ranging (LiDAR), and radar. Applications and approaches to vegetation diversity modeling and mapping with air- and spaceborne EO data are also presented. The chapter concludes with recommendations for the future direction of monitoring vegetation diversity using RS

    A Low-Frequency Inactivating Akt2 Variant Enriched in the Finnish Population is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk

    Get PDF
    To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting insulin, a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in fasting plasma insulin (FI) levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-hour insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio=1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.Academy of Finland (129293, 128315, 129330, 131593, 139635, 139635, 121584, 126925, 124282, 129378, 258753); Action on Hearing Loss (G51); Ahokas Foundation; American Diabetes Association (#7-12-MN-02); Atlantic Canada Opportunities Agency; Augustinus foundation; Becket foundation; Benzon Foundation; Biomedical Research Council; British Heart Foundation (SP/04/002); Canada Foundation for Innovation; Commission of the European Communities, Directorate C-Public Health (2004310); Copenhagen County; Danish Centre for Evaluation and Health Technology Assessment; Danish Council for Independent Research; Danish Heart Foundation (07-10-R61-A1754-B838-22392F); Danish Medical Research Council; Danish Pharmaceutical Association; Emil Aaltonen Foundation; European Research Council Advanced Research Grant; European Union FP7 (EpiMigrant, 279143; FP7/2007-2013; 259749); Finland's Slottery Machine Association; Finnish Cultural Foundation; Finnish Diabetes Research Foundation; Finnish Foundation for Cardiovascular Research; Finnish Foundation of Cardiovascular Research; Finnish Medical Society; Finnish National Public Health Institute; Finska Läkaresällskapet; Folkhälsan Research Foundation; Foundation for Life and Health in Finland; German Center for Diabetes Research (DZD) ; German Federal Ministry of Education and Research; Health Care Centers in Vasa, Närpes and Korsholm; Health Insurance Foundation (2012B233) ; Helsinki University Central Hospital Research Foundation; Hospital districts of Pirkanmaa, Southern Ostrobothnia, North Ostrobothnia, Central Finland, and Northern Savo; Ib Henriksen foundation; Juho Vainio Foundation; Korea Centers for Disease Control and Prevention (4845–301); Korea National Institute of Health (2012-N73002-00); Li Ka Shing Foundation; Liv och Hälsa; Lundbeck Foundation; Marie-Curie Fellowship (PIEF-GA-2012-329156); Medical Research Council (G0601261, G0900747-91070, G0601966, G0700931); Ministry of Education in Finland; Ministry of Social Affairs and Health in Finland; MRC-PHE Centre for Environment and Health;Municipal Heath Care Center and Hospital in Jakobstad; Närpes Health Care Foundation; National Institute for Health Research (RP-PG-0407-10371); National Institutes of Health (U01 DK085526, U01 DK085501, U01 DK085524, U01 DK085545, U01 DK085584, U01 DK088389, RC2-DK088389, DK085545, DK098032, HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN, R01MH107666 and K12CA139160268201300050C, U01 DK062370, R01 DK066358, U01DK085501, R01HL102830, R01DK073541, PO1AG027734, R01AG046949, 1R01AG042188, P30AG038072, R01 MH101820, R01MH090937, P30DK020595, R01 DK078616, NIDDK K24 DK080140, 1RC2DK088389, T32GM007753); National Medical Research Council; National Research Foundation of Korea (NRF-2012R1A2A1A03006155); Nordic Center of Excellence in Disease Genetics; Novo Nordisk; Ollqvist Foundation; OrionFarmos Research Foundation; Paavo Nurmi Foundation; Perklén Foundation; Samfundet Folkhälsan; Signe and Ane Gyllenberg Foundation; Sigrid Juselius Foundation; Social Insurance Institution of Finland; South East Norway Health Authority (2011060); Swedish Cultural Foundation in Finland; Swedish Heart-Lung Foundation; Swedish Research Council; Swedish Research Council (Linné and Strategic Research Grant); The American Federation for Aging Research; The Einstein Glenn Center; The European Commission (HEALTH-F4-2007-201413); The Finnish Diabetes Association; The Folkhälsan Research Foundation; The Påhlssons Foundation; The provinces of Newfoundland and Labrador, Nova Scotia, and New Brunswick; The Sigrid Juselius Foundation; The Skåne Regional Health Authority; The Swedish Heart-Lung Foundation; Timber Merchant Vilhelm Bang’s Foundation; Turku University Foundation; Uppsala University; Wellcome Trust (064890, 083948, 085475, 086596, 090367, 090532, 092447, 095101/Z/10/Z, 200837/Z/16/Z, 095552, 098017, 098381, 098051, 084723, 072960/2/ 03/2, 086113/Z/08/Z, WT098017, WT064890, WT090532, WT098017, 098051, WT086596/Z/08/A and 086596/Z/08/Z). Detailed acknowledgment of funding sources is provided in the Additional Acknowledgements section of the Supplementary Materials
    corecore